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Abstract— In this paper, we address the problem of optimal
and safe coordination of autonomous vehicles through a traffic
intersection. We state the problem as a finite time, constrained
optimal control problem, a combinatorial optimization prob-
lem that is difficult to solve in real-time. A low complexity
computational scheme is proposed, based on a hierarchical
decomposition of the original optimal control formulation,
where a central coordination problem is solved together with a
number of local optimal control problems for each vehicle. We
show how the proposed decomposition allows a reduction of
the complexity of the central problem, provided that approxi-
mated parametric solutions of the local problems are available
beforehand. We derive conditions for the construction of the
parametric approximations and demonstrate the method with
a numerical example.

I. INTRODUCTION

While autonomous vehicles today are mere demonstrators
of the technological capabilities and achievements of car
manufacturers and universities, they are likely to penetrate
the market on a broad scale in the future. Together with
widespread use of vehicle-to-vehicle (V2V) communica-
tion this will transform the road traffic system and enable
large improvements in terms of safety, energy efficiency
and infrastructure utilization [1]. A particularly problematic
subset of the scenarios in the traffic system are intersections,
in which a disproportionally large proportion of accidents,
injuries and fatalities occur, and where a large part of inef-
ficiencies originate [2]. It is therefore natural to investigate
coordination algorithms for autonomous vehicles at intersec-
tions and how this technology could be exploited to alleviate
these issues. In particular, scenarios where all vehicles are au-
tonomous and communicating offer the possibility to remove
current coordination mechanisms (e.g., traffic lights, signs
and rules) and solely rely on cooperative coordination among
the involved vehicles. Besides safe operation, optimization
with respect to objectives like overall energy efficiency are
then possible by, e.g., slowing down lighter vehicles in favour
of heavier ones [1] as soon as they are within a reliable
wireless communication range [3].

Several algorithms have been presented that address the
coordination problem at intersections for fully autonomous
vehicles. Commonly, the presence of a central decision
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maker is assumed, which manage time-space reservations in
the intersection to avoid collisions [4–8]. However, several
decentralized schemes have also been considered, e.g., as
in [9], [10], based on reachability analysis and sequential
decision making, or in [11] based on event driven interaction
protocols. Most of the existing work place heavy emphasis on
safety and collision avoidance, and schemes that are designed
to simultaneously address efficiency are rare.

In this paper, we formulate and study the intersection
coordination problem for autonomous vehicles using a fi-
nite time, constrained optimal control formalism, where the
global (intersection-wide) objective is to optimize a sum of
local costs. The formulation results in the prohibitively hard
combinatorial problem of choosing the order in which the
vehicles cross the intersection, constrained by the vehicle
dynamics and physical limitations.

The main contribution of this paper is a decomposition
scheme that gives an approximate solution to the original
optimal control problem with significantly lower demands
on computational capabilities and information exchange.
In particular, the combinatorial part of the problem (the
vehicle crossing order) is first separated from the problem
of finding the appropriate control inputs, and then solved
approximately, giving guaranteed collision free intersection
occupancy time slots that are feasible under the vehicle
dynamics and physical constraints. The control policies are
thereafter found by solving one optimal control problem for
each vehicle, constrained so that occupancy of the intersec-
tion is allowed only within the allocated time slot.

II. PROBLEM STATEMENT AND FORMULATION

We consider a scenario where N ∈ Z+ vehicles approach
a traffic intersection along predefined paths, as visualized in
Fig. 1a. There is only one vehicle per path and the traffic
intersection is therefore the area where two or more paths
paths intersect. The coordination is then the problem of
controlling the motion of each vehicle along its path such
that that access to the intersection area is mutually exclusive.
The motion dynamics along the path of the i-th vehicle are
described by

ẋi(t) = Aixi(t) +Biui(t),

yi(t) = Cixi(t),
(1)

where xi(t) ∈ Rni and ui(t) ∈ Rmi are the state and control
input vectors and the scalar output yi(t) is the position
along the path. The pair (Ai, Bi) is assumed controllable
and the state and input trajectories are constrained by the
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Fig. 1: Illustration of the considered scenario: (a) A road intersection
scenario with predefined paths p1, p2, p3. The region where collisions can
occur is marked in red, (b) The abstraction of the intersection used in
modelling.

linear inequalities

Gix(t) ≤ bi, ∀t,
Fiu(t) ≤ di, ∀t,

(2)

with Gi ∈ Rki×ni , bi ∈ Rki , Fi ∈ Rqi×mi , di ∈ Rqi , arising
from, e.g., actuator limitations and design requirements.
Additionally, for technical reasons we only consider strongly
output monotone systems, i.e., systems satisfying

ẏi(t) = Ciẋi(t) ≥ ε,∀t, (3)

for some ε > 0. Note that (3) implies that a vehicle can nei-
ther reverse nor stop at any time, but that arbitrarily small ε
are possible and therefore arbitrarily low speeds. For brevity,
we denote by Di(x0,i) the set of solutions (xi(t), ui(t)) to
(1) with initial condition xi(0) = x0,i, satisfying (2) and (3).
We model the intersection as a closed and compact subset of
positions along the path of each system, defined by the lower
and upper bounds Li and Hi, respectively, as depicted in
Fig. 1b. A vehicle is therefore inside the intersection at time
t if xi(t) ∈ Ei = {x | Li ≤ Cix ≤ Hi}, and the collision
avoidance requirements are consequently[

xTi (t), xTj (t)
]T

/∈ Ei × Ej , ∀t, ∀i, j ∈ N , i 6= j, (4)

where × denotes the cartesian product and N = {1, ..., N}.
Note that with a proper choice of Li and Hj and Hi − Li

large enough, we can in this way incorporate the vehicle
geometry.

A. Optimal Control Formulation

Consider the local performance criterion

Ji(xi(t), ui(t)) =

∫ tf

0

Λi(xi(t), ui(t))dt, (5)

where Λi(xi(t), ui(t)) is quadratic and convex in xi(t) and
ui(t), and tf is the final time. The problem of finding
the optimal, physically feasible control functions that avoids
collision can then be formalized as follows:

Problem 1 (Optimal Coordination Problem (OCP)). Given
the initial states xi(0), i ∈ N solve the problem

min
x(t),u(t)

N∑
i=1

Ji(xi(t), ui(t)) (6a)

s.t. [xTi (t), uTi (t)] ∈ Di(xi(0)), ∀i ∈ N (6b)
[xi(t), xj(t)] /∈ Ei × Ej , ∀t, ∀i 6= j (6c)

where x(t) = [xT1 (t), ..., xTN (t)]T , u(t) =
[uT1 (t), ..., uTN (t)]T .

It is emphasized that the collision avoidance condition
(6c) renders the problem non-convex, as visualized in Fig. 2.
More precisely, a solution to (6) contains the best of the N !
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Fig. 2: Schematic illustration of a 2D cut of the state-space in (6). The red
area contains the infeasible state space combinations according to (6c) and
corresponds to collisions between vehicles 1 and 2.

possible intersection crossing orders, in Fig. 2 corresponding
to trajectories that goes above or below the red square. The
problem is thus combinatorial and the solution need to be
calculated using combinatorial optimization techniques.

In the next section, a decomposition is presented for
the OCP, with the objective of designing low complexity
algorithms for approximate solution.

III. PROBLEM DECOMPOSITION

In order to present the decomposition of Problem 1 we
need to introduce the following additional notation. Given
Cxi(0) < Li, the time instance when the i-th vehicle enters
(τi) and exits (ξi) the intersection are defined as

τi = t : Cixi(t) = Li, ξi = t : Cixi(t) = Hi. (7)

Note that (3) implies the uniqueness of the pair (τi, ξi) for
a given xi(t), and that the occupancy time interval [τi, ξi],
i.e., t ∈ [τi, ξi] ⇔ xi(t) ∈ Ei, is closed and compact when
Hi > Li. With (7), condition (4) can therefore equivalently
be restated as

[τi, ξi] ∩ [τj , ξj ] = ∅, ∀i, j ∈ N , i 6= j. (8)

We first introduce the coordination problem, which opti-



mally allocates occupancy timeslots to each vehicle as

min
T,E

N∑
i=1

Fi(τi, ξi)

s.t. [τi, ξi] ∩ [τj , ξj ] = ∅, ∀i, j ∈ N , i 6= j,

[τi, ξi] ∈ Si(x0,i).

(9a)

where T = [τ1, .., τN ]T , E = [ξ1, ..., ξN ]T , while Fi(τi, ξi)
and Si(x0,i) are the value function and the set of feasible
parameters, respectively, of the following local, convex para-
metric optimization problems

Fi(τi, ξi) = min
xi(t),ui(t)

Ji(xi(t), ui(t))

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i),

Cixi(τi) = Li,

Cixi(ξi) = Hi,

(9b)

The solution to the right hand side of (9b) is thus the optimal
input and state trajectories given the parameters τi and ξi,
which has the cost Fi(τi, ξi). The following results then hold,
where the proofs are reported in [12]:

Theorem 1. The optimization problems (6) and (9) are
equivalent.

Furthermore, assuming Cx0,i < Li < Hi and tf suffi-
ciently large, we define:

Definition 1 (Earliest and latest entry and exit times). The
earliest (latest) entry time, T l

i (Th
i ) ∈ R is defined as τ :

Cixi(τ) = Li, where xi(t) is the solution to

max(min)
xi(t),ui(t)

Cx(tf )

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i).
(10)

Similarly, given τi ∈ [T l
i , T

h
i ], the earliest (latest) exit

time, El
i(τi) (Eh

i (τi)), is defined as t : Cixi(t) = Hi,
where xi(t) is the solution to (10) with the additional
constraint Cixi(τi) = Li.

The following result holds for the exit times:

Proposition 1. El
i(τi), and Eh

i (τi) are continuous, strictly
increasing in [T l

i , T
h
i ].

The sets Si(x0,i) of feasible parameters are then such that

Proposition 2. Si(x0,i) = {(τi, ξi) : τi ∈ [T l
i , T

h
i ] and ξi ∈

[El
i(τi), E

h
i (τi)]} and is a closed and compact set.

Additionally, we define

Definition 2 (Optimal exit time). The optimal exit time given
an entrance time τi ∈ [T l

i , T
h
i ] is defined as gi(τi) = t :

Cixi(t) = Hi, where xi(t) is the minimizer of

min
xi(t),ui(t)

Ji(xi(t), ui(t))

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i),

Cixi(τi) = Li.

(11)

It immediately follows that gi(τi) is uniquely defined (due
to convexity of (11)), continuous and that El
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Fig. 3: Schematic visualization of the defining elements of Si(x0,i). The
curved black lines represent the trajectories resulting from maximum and
minimum control signal respectively. The curved blue lines show the same
given that the entrance time τi is enforced. The red line is the optimal
trajectory when τi is enforced.

Eh
i (τi). It also follows that Fi(τi, gi(τi)) ≤ Fi(τi, ξi), with

equality only for ξi = gi(τi), and that the minimizer [τ∗i , ξ
∗
i ]

of Fi(τi, ξi) is such that gi(τ∗i ) = ξ∗i . We then have:

Theorem 2. Solutions to (9a) satisfy ξi ≤ gi(τi) , i ∈ N .

Proposition 3. Fi(τi, ξi) has a unique minimum in Si(x0,i).

Proposition 4. Fi(τi, ξi) is increasing with |τi − τ∗i | and
|ξi − ξ∗i |.

To summarize, Si(x0,i) is a closed and compact set in
the [τi, ξi] parameter space, implicitly defined through the
constraints (1), (2) and (3), and Fi(τi, ξi) is “bowl-shaped”
with a unique minimum over this set.

IV. APPROXIMATION

In this section, the results presented in Section III will
be used to construct a computational scheme that approxi-
mately solves (6). More precisely, we propose a two staged
procedure where (9a) first is solved using approximations of
Fi(τi, ξi) and Si(x0,i) for approximately optimal occupancy
time slots [τ∗i , ξ

∗
i ]. Using these, a relaxation of (9b) is

then solved for each vehicle to obtain the state and control
trajectories x∗i (t) and u∗i (t). Conditions are given on how
Fi(τi, ξi) and Si(x0,i) must be formed to guarantee that a
solution to the approximation scheme is feasible in terms
of (6).

A. Relaxation

Consider the following relaxation of problem (9b)

min
xi(t),ui(t)

Ji(xi(t), ui(t)) (12a)

s.t. [xTi (t), uTi (t)] ∈ D(x0,i), (12b)
Cx(τ∗i ) ≤ Li, (12c)
Cx(ξ∗i ) ≥ Hi, (12d)

and denote by x∗i (t), u∗i (t) its solution for a given [τi, ξi].
The actual entry and exit time τ̂i = t : Cix

∗
i (t) = Li, ξ̂i =

t : Cix
∗
i (t) = Hi are then such that [τ̂i, ξ̂i] ⊆ [τi, ξi], since by

(3), Cx∗i (τi) < Li ⇒ τ̂i > τi and Cx∗i (ξi) > Hi ⇒ ξ̂i < ξi.



Note that due to (3), solutions exist to (12) provided that (i)
τi ≤ Th

i since otherwise τ̂i > Th
i , and (ii) ξ∗i ≥ El

i(τi), since
otherwise ξ̂i ≥ El

i(τi). The bounds τ ≥ T l
i and ξ ≤ Eh

i (τi)
on the other hand, do not affect the feasibility of (12) due
to the direction of the inequalities (12c) and (12d).

B. Explicit approximation of Si(x0,i)
We first note that the solution to (9a) are sought in

Sei (x0,i) = Si(x0,i) \ {τ, ξ | ξ > gi(τ)}, i = 1, ..., N ,
according to Theorem 2. Due to this it is only necessary to
find an approximation Ŝei (x0,i) of Sei (x0,i). To ensure that
all elements in the approximation are feasible in terms of
the relaxed local problem, it is as described above necessary
that all [τi, ξi] ∈ Ŝei satisfy τ ≤ Th

i and El
i(τi) ≤ ξi

for problem (12). Similarly, to avoid removing the optimal
exit time given τi, gi(τi), Ŝei (x0,i) must be such that ξi ≤
gi(τ). While T l

i , T
h
i are easily computed through Definition

1, neither El
i(τi) nor gi(τi) are easily obtained. However,

by choosing strictly increasing functions ui(τi) and li(τi)
such that gi(τi) ≤ ui(τi), El

i(τi) ≤ li(τi) and li(τi) ≤
ui(τi),∀τi ∈ [T l

i , T
h
i ] and letting

Ŝei (x0,i) =
{
τi, ξi | τi ∈ [T l

i , T
h
i ], ξi ∈ [li(τ), ui(τ)]

}
,

we have by Proposition 2 that (12) is feasible ∀[τi, ξi] ∈
Ŝei , and that [τi, gi(τi)] ∈ Ŝei (x0,i),∀τi ∈ [T l

i , T
h
i ], without

direct use of gi(τi) or El
i(τi). Consequently, if occupancy

times [τi, ξi] ∈ Ŝei (x0,i), i = 1, ..., N are such that [τi, ξi] ∩
[τj , ξj ] = ∅, then the actual occupancy times [τ̂i, ξ̂i], are
such that [τ̂i, ξ̂i] ∩ [τ̂j , ξ̂j ] = ∅ and therefore also feasible
in (9). The solutions [x∗i (t), u∗i (t)] to (12) for i = 1, ..., N
corresponding to [τ̂i, ξ̂i], are in that case also feasible in (6)
according to Theorem 1.

Remark 1. Note that usage of this approximation has two
consequences. First, all [τi, ξi] ∈ Sei (x0,i) \ Ŝei (x0,i) are
feasible in the exact formulation of (9a), but a priori removed
from the approximate formulation . Second, all [τi, ξi] ∈
Ŝei (x0,i) \ Sei (x0,i) could be solutions to the approximate
formulation of (9a), but by Theorem 2 never to the exact
one. Consequently, the scheme is conservative as larger
timeslots than strictly needed might be retrieved from the
solution of the approximate formulation. Tighter bounding
functions li(t) and ui(t) will reduce the conservativeness
and expand the set of feasible solutions. An illustration of
the set Si(x0,i)e and its approximation Ŝei based on linear
bounds li(τi), ui(τi) is given in Fig. 4.

C. Explicit approximation of Fi(τi, ξi)

According to Propositions 3 and 4, Fi(τi, ξi) has a unique
minimum at τ∗i , ξ

∗
i and increases with |τi−τ∗i | and |ξi−ξ∗i |.

We therefore propose the use of a strictly convex function
F̂i(τi, ξi) with minimum in τ∗i , ξ

∗
i .

D. Proposed Algorithm

The three main steps of the proposed coordination algo-
rithms are summarized as follows:
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Fig. 4: Schematic visualization of the proposed approximation method for
Si(x0,i). The blue bordered area represents Ŝe

i (x0,i), the black bordered
area Si(x0,i). The area in dashed black shows Se

i (x0,i) \ Ŝe
i (x0,i), i.e.,

feasible solutions that are lost in the approximation, whereas Ŝe
i (x0,i) \

Se
i (x0,i), shown in dashed red, contains elements that are unnecessarily

considered.

1) [Offline] ∀i ∈ N : Compute Ŝei (x0,i) and F̂i(τi, ξi).
The calculation can be independently performed by
each vehicle.

2) [Online] Centrally solve (9a) with Ŝei (x0,i) and
F̂i(τi, ξi) calculated at step 1, to obtain [τ∗i , ξ

∗
i ],∀i ∈

N . If not solvable, return infeasible.
3) [Online] ∀i ∈ N : With [τ∗i , ξ

∗
i ], solve (12) for mini-

mizers x∗i (t), u∗i (t), ∀i ∈ N .
Due to the construction of Ŝei (x0,i), the algorithm will
in general be conservative as described in Remark 1. In
particular, Problem (9a) might be infeasible with Ŝei (x0,i),
although feasible with Sei (x0,i). However, since (12) is
feasible for all solutions to the approximate formulation of
(9a), the algorithm cannot provide a solution that is infeasible
in (6).

V. NUMERICAL EXAMPLE

In this section, we present a numerical evaluation of the
algorithm introduced in Section IV and details the three
steps described in Section IV-D. Results from an evaluation
over a range of random vehicle configurations is presented.
In particular, the performance of the proposed algorithms
is compared against the exact solution in terms of sub-
optimality and effective execution time (using commercially
available standard solvers) is presented and discussed.

A. Vehicle Model

Problem (6) is discretized on a uniform time grid of
size K ∈ R+, so that the sample time ∆t = tf/K
Furthermore, the vehicles are modelled as double integrators
with the state vector is defined as xi(k) = [pi(k) vi(k)]T .
Here pi(k), vi(k) are position and velocity of the vehicle
along the path, respectively, and k is the discrete time index,
while the control ui(k) is the vehicle acceleration. The con-
straints (2) and (3) are chosen as

¯
ui ≤ ui(k) ≤ ūi and 0 <

εi ≤ vi(k) respectively. Further, we let Λi(xi(k), ui(k)) =
(vd,i − vi(k))

2
Qi+u

2
i (k−1)Ri in (5), where vd,i ∈ R+ is a

constant reference velocity and Qi, Ri ∈ R+. For simplicity,
the intersection is defined equally large for all vehicles, i.e.,
so that Hi − Li = Hj − Lj ,∀i, j ∈ N .



B. Exact Solution
The constraints (6c) are enforced by introducing auxiliary

binary decision variables, δi(k), γi(k) ∈ {0, 1}, and for i =
1, ..., N and k = 1, ..., N require that

Cixi(k) ≤ Li + δi(k)M, (13a)
Hi − γi(k)M ≤ Cixi(k), (13b)

δi(k) + δj(k) + γi(k) + γj(k) ≤ 3, (13c)

where M is a sufficiently large number. The resulting prob-
lem is a mixed binary integer quadratic program (MBIQP)
with 2NK binary and

∑N
i=1mi + ni continuous variables,

with K
∑N

i=1 ni equality and K
∑N

i=1(qi+ki+1)+2N(N−
1) inequality constraints.

C. Approximate Solution
With the purpose of stating also the approximate formula-

tion of (9a) as a MBIQP, the bounding functions li(τi) and
ui(τi) are chosen affine, and the approximation F̂i(τi, ξi)
quadratic.

Step 1: The earliest and latest entry times [T l
i , T

h
i ] are

first obtained through solution of (10). Samples of El
i(τi)

and gi(τi) on a grid of τi ∈ [T l
i , T

h
i ] are then obtained

directly through Definition 1 and Definition 2. Affine func-
tions li(τi) and ui(τi) are thereafter fitted to the data,
constrained to satisfy El

i(τi) ≤ li(τi) ≤ ui(τi) and ui(τi) ≥
gi(τi) at all sampled τi, giving the required components of
Ŝei (x0,i). Similarly, samples of Fi(τi, ξi) are obtained by
solving (9b) on a grid of [τi, ξi] ∈ Ŝei (x0,i), after which
a quadratic form F̂i(τi, ξi) is fitted to the data. The retrieval
of the samples involves solving multiple LP’s, El

i(τi)) and
QP’s (gi(τi), F̂i(τi, ξi), whereas the function fitting is done
through LP’s (El

i(τi), gi(τi)) and SDP’s (F̂i(τi, ξi)).
Step 2: Using the computed approximations, (9a) is solved

as a MBIQP, where [τi, ξi]∩ [τj , ξj ] = ∅ is enforced through
ξi ≤ τj +Mδij , and ξj ≤ τi +M(1− δij), where δij , i 6= j,
are binary decision variables and M is a large number. This
problem has 2N continuous decision variables, 1/2(N−1)N
binary decision variables and N2 + 3N affine inequality
constraints.

Step 3: With the non-overlapping occupancy timeslots
from Step 2, (12) is solved for each of the N vehicles.

D. Simulation set-up
The evaluation is carried out on a class of scenarios with

six vehicles, where for each vehicle the initial conditions
x0, desired speed vd[m/s], actuation limits

¯
u, ū[m/s2] and

objective function weights Q,R, are all drawn from the
uniform distribution on the ranges given in Table I. Other
relevant parameters that are set to Hi − Li = 10[m],
K = 100, ∆t = 0.1[s], ε > 0.01[m/s]. Given a scenario
instance, the exact problem (6) is solved first, whereafter the
approximate algorithm runs only if (i) a feasible solution
to (6) exists, and (ii) the solution is non-trivial (i.e. the
solution requires some adaptation to avoid collisions). The
linear programs of Step 1 and quadratic programs of Steps
1 and 3, as well as the MIQPB’s (6), (9a), are solved using
CPLEX.

p0 v0
¯
u ū vd Q R

min -100 30 -3 1 30 1 1

max -50 90 -1 3 90 10 10

TABLE I: Ranges for the vehicles parameters in the simulation. Note that
x0 = [p0, v0]T .

E. Results

The following results were obtained from 1000 instances
drawn from the scenario envelope. The running time perfor-
mance recorded is given in Table II, where the comparison
is made between the parts of the solutions that by necessity
must be at least coordinated centrally, i.e., the entire (6) and
(9a) for the exact and approximate solutions respectively. The
proposed algorithms performance in terms of sub-optimality
is shown in Fig. 5, computed as (Ĵ∗ − J∗)/J∗, where J∗

and Ĵ∗ is the cost of the exact and approximate solution
respectively. Furthermore, it is noted that in 9 realizations (≈
1%), a feasible solution existed to (6) but not to (9a), showing
the conservativeness introduced by the approximation as
discussed in Remark 1. An example of the resulting time-
position trajectories is given in Fig. 6.

Mean s

Exact solution, (6) 10.14 [s] 24.067 [s]

Approximation, Step 2, (9a) 0.043 [s] 0.022 [s]

TABLE II: Statistics on time performance as reported by MIQPB solver over
the examined 1000 instances, where s is the empirical standard deviation.
The compared MBIQP’s (6) and (9a) are solved with CPLEX on a 1.9 GHz
Intel i5 desktop with 8 GB RAM, running Windows 7.
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Fig. 5: Distribution of the performance of the proposed algorithm in terms
of sub-optimality for 1000 instances drawn from the scenario envelope with
parameters according to Table I

VI. DISCUSSION

Although both (6) and the proposed approximation scheme
has exponential worst time complexity, the difference in
practice is clearly substantial (c.f. Table II). This is a natural
consequence of the large decrease in problem size from (6)
to (9a). Note in particular that neither the dynamics nor the
discrete time horizon has any effect on the size of the actual
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Fig. 6: Time-position plot of one realization from the envelope of scenarios
described with parameters according to Table I. The grey band represents
the intersection (equally large for all vehicles) and the different coloured tra-
jectories the position of the different vehicles, where solid lines correspond
to exact solutions and dashed lines to approximate. Note in particular the
dark blue and orange trajectories, that shows that the approximate solution
has found a different crossing order than the direct.

coordination problem, enabling the use of arbitrary large
models and horizons. The computational effort is instead
largely moved to Steps 1 and 3 of the approximation pro-
cedure, which can be computed a-priori and retrieved from
memory, or in parallel (i.e. on-board the different vehicles).
The price paid is sub-optimality, which is directly dependent
on the size of Ŝei (x0,i) \ Sei (x0,i), Sei (x0,i) \ Ŝei (x0,i),
and on the quality of the F̂i(τi, ξi) fit. Consequently, other
choices of e.g. li(τi), ui(τi, ξi) than affine functions could
increase the performance of the approximation. However, it is
worth emphasizing that even though the approximations are
constructed with simple functions, the algorithm gives results
below 20% suboptimality in around 85 % of the realizations.
Furthermore, the proposed method offers a natural coding
of the basic components of cooperative decision making;
the options of each participant (Ŝei (x0,i)) and the associ-
ated preferences (F̂i(τi, ξi)). The compact representation has
beneficial consequences also for the design and evaluation
of the associated communication system, as the information
exchange is small and performance requirements can be
derived easily. Finally, the set Si(x0,i) and cost function
Fi(τi, ξi) presented in this paper can be viewed as the result
of a multi parametric program (MPP). Although a rich theory
exists for standard linear and quadratic MPP’s, problem (9b)
differs fundamentally in that the parameters [τi, ξi] enters the
formulation in a non-standard fashion.

VII. CONCLUSIONS

In this paper, we have presented an algorithm for approx-
imate solution to the intersection problem for autonomous
vehicles. In our algorithm, the problem is parametrized with
the intersection entry and exit times, and given a hierarchical

structure with a central optimization-based coordinator. The
influence of the individual vehicle dynamics are condensed
and approximatively represented with simple expressions.
The main benefits of the presented scheme are: (i) the near-
optimality and dynamic feasibility of the obtained solutions,
(ii) the ability to use objectives conditioned on the individual
vehicle states (energy usage etc.), (iii) a significant reduction
of the computational demands on the central unit, and (iv) a
low and predictable demand on the communication system,
resulting from the compact representation of each vehicles
possibilities and preferences. In future work, we intend
to investigate the closed loop behaviour of the proposed
algorithm, the influence of communication related uncer-
tainties (packet drops etc.) as well as further reductions in
complexity.
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