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Abstract— This paper deals with simple integrator consen-
sus problems. The objective is the design of an improved
consensus algorithm for continuous-time multi-agent systems
using memory effects. The novel algorithm proposes to sample,
in an appropriate manner, part of the multi-agent systems
information such that the algorithm converges, assuming that at
each instant, agent’s control laws will also consider the sampled
past information of its neighbors. Stability conditions expressed
in terms of LMI’s and based on algebraic communication
matrix structure are provided. The efficiency of the method
is tested for different network communication schemes.

I. I NTRODUCTION

Networked control systems (NCS) are systems which are
spatially distributed with a communication network used
between sensors and actuators. Their primary advantages
include their low cost, reduced weight and power require-
ments, simple installation and maintenance, and higher re-
liability. This means NCS’s applications can be found in a
large range of areas such as mobile sensor networks ([1]),
remote surgery, haptic collaboration over Internet, multi-
robot systems ([2]), automated highway systems, averaging
in communication networks ([3]) and formation control ([4]).
Several results have appeared in recent literature that con-
sider systems with different motion models, symmetry of
communication and network interactions. A recent review of
the vast literature in the field can be found in [5], [6] and
[7].

A ”consensus” algorithm represents an interaction rule
that specifies the information exchange between an dynamic
system, oragent, and all of its neighbors over the network
in order to reach an agreement regarding a certain quantity
of interest that depends on the state of all agents. Here,
we consider that agents are assumed to obey a simple in-
tegrator model. Knowing that classical consensus algorithms
converge with a decay rate equal to the second smallest
eigenvalue of LaplacianL, we propose to study improved
behaviors for such algorithms. Accelerating the convergence
of synchronous distributes averaging algorithms have been
studied in literature based on two main approaches: opti-
mizing the topology-respecting weight matrix summarizing
the updates at each node ([3]) or incorporating memory into
the distributed averaging algorithm. In this scope, even if for
most applications, delays lead to a reduction of performances
or can even lead to instability, there exists some cases where
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the introduction of a delay in the control loop can help to
stabilize a system which would not be stable without it.
This have been studied in [8] and [9]. Also,local memory
effect’s on consensus algorithms performances have also
been studied in [10], considering naturally unstable systems
and using the stabilizing delay concept (sampled approach)
in order to achieve consensus. Theoretical guarantees for
a distributed averaging algorithm with memory are also
provided in [11] and [12].

In this article, in order to present better behaviors, we
will provide an improved consensus algorithm with local
memory based on sampling approach. We will prove, in a
theoretical way, that the proposed algorithm always improves
standard performances, and a method to design the algorithm
parameters, including the appropriated sampling period T, on
an ”optimal” way is proposed based on a LMI’s formulation.
The communication graphs are supposed to be directed and
undirected. This paper is organized as follows: Section II
presents the problem treated in this article, as Section III will
be dedicated to the establishment of the appropriated model.
In Section IV we will motivate our work, and in Section V we
stability analysis of the algorithm will be provided. Section
VI includes illustrating simulation results and performance
analysis, and finally, Section VII will present our conclusions
and indicate possible future research efforts.

Throughout the paper,Rn denote then-dimensional Eu-
clidean space, andRn×m is the set ofn × m real matrices.
The set Sn stands for the set of symmetric matrices of
R

n×n. The superscript ‘T ’ stands for matrix transposition.
For any matrixP in S

n, the notationP > 0 means that the
matrix P is positive definite. For any matrixA in R

n, the
notation2He{A} corresponds to the following sumA+AT .
The matrixI represents the identity matrix. Finally, for any
matrix M , the notation(M)i denotes theith line of M and
λk(M) represents thekth eigenvalue ofM . For the graphG
with N vertices and edge set given byE = {(i, j) : j ∈ Ni}
theadjacency matrixA = A(G) = (aij) is theN×N matrix
given by aij = 1, if (i, j) ∈ E and aij = 0, otherwise.
The degreedi of vertex i is defined as the number of its
neighboring vertices, i.e.di = #j : (i, j) ∈ E. Let ∆ be the
N × N diagonal matrix ofdi’s. The Laplacianof G is the
matrix L = ∆ − A. For an undirected graph the Laplacian
matrix is symmetric positive semidefinite. Zero is a simple
eigenvalue ofL (the corresponding eigenvector is the vector
of ones,

−→
1 ) if and only if the associated directed graph has

a directed spanning tree.



II. PROBLEM STATEMENT

A. Consensus Algorithm

In this paper the following problem is addressed. Consider
the classical simple integrator consensus algorithm

{

ẋi(t) = ui(t)
ui(t) =

∑

j∈Ni
aij(xj(t) − xi(t))

i ∈ {1, . . . , N},

(1)
where xi represents variables of agenti. Introducing the
vector x(t) = [x1(t), .., xN (t)]T containing the state of all
agents, we then derive:

ẋ(t) = −Lx(t) , (2)

whereL is the Laplacian matrix.
This algorithm is distributed in the sense that each agent

has only access to information from its neighbors. Moreover,
consensus algorithms can be archived asymptotically if and
only if the graph associated to the LaplacianL has a directed
spanning tree (page 25 [13]).

In this paper, we will propose an improved algorithm for
simple integrator agents. The goal is a performance com-
paraison between the proposed and the classical algorithm,
where memory’s effects on system’s stability will be bring
forward. Assuming that there exists a constant and positive
scalarµ such that:

∑

j∈Ni

aij = µ, i ∈ {1, . . . , N}.

The previous algorithm is modified into a new algorithm
shown in Figure 1. To do so, we introduce a periodic
sampling denoted by the sequence of instants{tk}k≥0 and
such thatt0 = 0 andT = tk+1−tk. The improved algorithm
is defined by

∀t ∈ [tk tk+1[, ẋ(t) = (−L − δA)x(t) + δAx(tk) (3)

whereA is the adjacency matrix of the communication graph,
δ ∈ R andT = tk+1 − tk > 0 are additional parameters of
the improved algorithm. From the point of view of agent
i, the statexi is available at every timet. However, both
continuous and sampled data from the neighbor agents of
agenti are used.
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Fig. 1. Bloc diagrams of the classical and the improved algorithms.

Note that if δ and/orT are taken as zero, the classical
algorithm is retrieved. In this article, we consider a sampling
delay approach, using the time-varying delay defined by
τ(t) = t − tk, for all t ∈ [tk, tk+1] introduced in [14]
and used in the context of multi-agent consensus algorithm
in [10]. From computational point of view, this choice is

relevant. One may have consider a constant delayτ instead
of the sampling delay. However all values ofx in the interval
[t − τ, t] should be kept in memory whereas only one
data is held when using the sampling approach. An inherent
assumption is that all agents are synchronized and share
the same clock to ensure that the agents also share the
same sampling. For the sake of simplicity, we assumed that
the sampling process is periodic. This makes sense in the
situation of multi-agents systems. However the latter analysis
could be extended to asynchronous samplings.

B. Preliminary definition

In order to clarify the presentation, a definition of expo-
nential stability will be stated here.

Definition 1: ([15]) Let α > 0 be some positive, constant,
real number. The system is said to be exponentially stable
with the decay rateα, or α-stable, if there exists a scalar
β ≥ 1 such that the solutionx(t; t0, φ) satisfies:

|x(t; t0, φ)| ≤ β|φ|τe−α(t−t0). (4)

III. D EFINITION OF AN APPROPRIATE MODEL

This section focuses on the definition of a suitable model-
ing of the consensus algorithm (3) to analyze its convergence.
Knowing that the vector

−→
1 is an eigenvector of the Laplacian

matrix associated to the eigenvalue0, it is possible to find a
change of coordinatesx = Wz such that:

U(−µI + A)W =

[

B ~0
~0T 0

]

, (5)

whereU =

[

U1

U2

]

= W−1 and U2 = (U)N . For graphs

containing a directed spanning tree the Laplacian eigenvalues
are all positive and we denote them by0 < λ2 ≤ . . . ≤ λN .
Let alsoB ∈ R

(N−1)×(N−1) be a diagonal matrix with−λi.
The following lemma, which is taken from [16], provides an
appropriate way to rewrite (3) based on the properties of the
matrix L.

Lemma 1:The system (3) can be rewritten in the follow-
ing way:

ż1(t) = (−B + δ(B + µI))z1(t) − δ(B + µI)z1(tk), (6a)

ż2(t) = −µz2(t) + µz2(tk), (6b)

where z1 ∈ RN−1, z2 ∈ R and the matrixB in given in
(10).

Proof: By the Leibnitz formula, we havex(tk) =
x(t) −

∫ t

tk

ẋ(s)ds, for all differentiable functionsx. System
(3) can be rewritten as:

ẋ(t) = −Lx(t) − δA

∫ t

tk

ẋ(s)ds. (7)

This representation is a way to understand how memory
components affect the algorithm. We then rewrite (3) into two
equations defined byz1 = U1x ∈ R

(N−1) andz2 = U2x ∈



R
N representing, respectively, theN − 1 first components

and the last component ofz. Then (3) is rewritten as
[

ż1(t)
ż2(t)

]

= −

[

B ~0
~0T 0

] [

z1(t)
z2(t)

]

−

[

A′
1

A′
2

]
∫ t

t−τ

ż(s)ds,

where

[

A′
1

A′
2

]

= UAW and A′
2 = (UAW )N . From (5),

simple matrix calculations lead us to

[

A′
1

A′
2

]

= UAW = ULW +µI =

[

B + µI ~0
~0T µ

]

(8)

Using the Leibnitz formula, (3) can be rewritten as

ż1(t) = −Bz1(t) + δ(B + µI)
∫ t

tk

ż1(s)ds,

ż2(t) = −δµ
∫ t

tk

ż2(s)ds.
(9)

The consensus problem is now expressed into an appro-
priate form to perform stability criteria. In the case of a
symmetric network, the matrixW is an orthogonal matrix
which meansU = WT . Then if the last column ofW is β

−→
1 ,

then U2 = 1/(βN)
−→
1 , which means thatz2 corresponds to

the average of the position of all agents. This does not hold
always for asymmetric communication network.

In the sequel, a stability analysis of the algorithm is
proposed for any graph with a directed spanning tree, rep-
resented by the LaplacianL. Requiring a directed spanning
tree is less stringent than requiring a strongly connected and
balanced graph ([13]). This analysis is composed by two
parts, one dealing with the stability of the algorithm and
another concerning the agreement of the agents. More par-
ticularly, we will propose a method to choose appropriately
the algorithm parametersδ andT for a givenL, considering
a performance optimisation. Next section will motivate this
study.

IV. D OES THIS ALGORITHM ALWAYS IMPROVE

STANDARD PERFORMANCES?

Assume for the moment that the Laplacian matrix corre-
sponds to a symmetric graph. LetB be the diagonal matrix
of the Laplacian eigenvalues defined before. We know that

B =







−λ2 . . . 0
...

. . .
...

0 . . . −λN






. (10)

Thus, we establish for alli = 1, . . . , N − 1

ż1i(t) = (−λi+1 + b)z1i(t) − bz1i(tk). (11)

with b = δ(λi+1 + µ).
By integrating the previous equation, the following re-

currence equation represents the discrete dynamics of the
algorithm.

z1i(tk+1) = A(λi+1, δ, T )z1i(tk), (12)

with

A(λi+1, δ, T ) = exp(−λi+1+b)T −λi+1

−λi+1 + b
+

b

−λi+1 + b
.

Note that system’s (12) stability increases asA(λi+1, δ, T )
decreases. We will prove that by varyingδ and T values
close to zero, we achieve a performance improvement for
∀λi+1, if

∂A(λi+1, δ, T )

∂T
≤ 0, for someδ values (13a)

∂A(λi+1, δ, T )

∂δ
≤ 0, for some T values (13b)

From (12), by derivation ofA(λi+1, δ, T ), we have

∂A(λi+1, δ, T )

∂T
= − e

(−λi+1+b)T
λi+1

∂A(λi+1, δ, T )

∂δ
=
−λi+1e

(−λi+1+b)T

(−λi+1 + b)

[

T (λi+1 + µ) −
(λi+1 + µ)

−λi+1 + b

]

+
(λi+1 + µ)

(−λi+1 + b)2
(λi+1 + 2b)

When we evaluate the previous equation forT ≃ 0 and for
δ ≃ 0, respectively, we have

∂A(λi+1, δ, T )

∂T
= − λi+1 ≤ 0

∂A(λi+1, δ, T )

∂δ
=e−λi+1T (λi+1 + µ)

(

T +
1

λi+1

)

−

(

λi+1 + µ

λi+1

)

≤ 0

As ∂A(λi+1,δ,T )
∂T

= −λi+1 is negative for all value ofδ, and
∂A(λi+1,δ,T )

∂δ
is also negative for small values of T, we can

then conclude that for small values ofδ andT system (12)
tends to converge more rapidly when compare with the trivial
algorithm. The pertinent problem of how to chose theses
parameters values has been rased here, and will be treated
in the next section.

V. STABILITY ANALYSIS

A. Preliminary stability analysis

This section deals with the stability analysis of (6b). The
following lemma holds.

Lemma 2:The system defined in (6b) is constant for any
sampling periodT and anyδ

∀t, z2(t) = z2(0) (16)
Proof: Considerk ≥ 0 and anyt ∈ [tk tk+1[ and any

parametersT , δ. The previous ordinary differential equation
has known solutions of the form

z2(t) = e−δµ(t−tk)C0 − z2(tk) (17)

whereC0 ∈ R represent the initial condition of the ordinary
differential equation. The initial condition is determined at
time t = tk. We then obtainC0 = 0 and thus

∀t ∈ [tk tk+1[, z2(t) = z2(tk) = z2(0) (18)

Then, we deduce thatz2 is constant



B. Stability analysis of the consensus algorithm

Consider the consensus algorithm (3) rewritten in the form
of (6). We can establish

ż1(t) = A(δ)z1(t) + Ad(δ)z1(tk), (19)

with A(δ) = (−B + δ(B + µI)) andAd(δ) = −δ(B + µI).
The following theorem holds

Theorem 1:Consider the proposed consensus algorithm
(3) associated to a given LaplacianL representing a commu-
nication graph with a directed spanning tree, a givenα > 0,
δ > 0 andT > 0.

Assume that there existP > 0, R > 0 andS1 andX ∈ S
n

and two matricesS2 ∈ R
n×n andN ∈ R

2n×n that satisfy

Π1 + fα(T, 0)Π2 + hα(T, 0)Π3 < 0, (20)
[

Π1 + hα(T, T )Π3 gα(T, T )N
∗ −gα(T, T )R

]

< 0, (21)

where

Π1 = 2He{MT
1 P (M0 + αM1)} − MT

3 S1M3

−2He{MT
3 S2M2) − 2He{NM3},

Π2 = MT
0 RM0 + 2He{MT

0 (S1M3 + S2M2)},
Π3 = MT

2 XM2,

and M0 =
[

A(δ) Ad(δ)
]

, M1 =
[

I 0
]

, M2 =
[

0 I
]

, M3 =
[

I −I
]

. The functionsfα, gα andhα

for all scalarsT andτ ∈ [0 T ] are given by

fα(T, τ) = (e2α(T−τ) − 1)/2α,
gα(T, τ) = e2αT (1 − e−2ατ )/2α,

hα(T, τ) = 1
α

[

e2αT −1
2αT

− e2ατ
]

.
(22)

Then, the consensus algorithm (3) with the parameterδ
and the sampling periodT is thusα−stable. Moreover the
consensus equilibrium is given by

x(∞) = U2x(0). (23)
Proof: The proof in based on the Lyapunov Theorem

for discrete-time system using the continuous-time model of
the multi-agent systems. For simplicity the proof is omitted
but is presented in [17] and is similar to [10].

VI. EXAMPLES
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Fig. 2. Corresponding graphs of the matricesL0 andL1.

Consider a set of six and four agents connected through,
respectively, the undirected and directed graphs shown in

Figure 2. To each graph is associated a Laplacian matrix
given by

L0 =









−1 0.5 0 0 0 0.5
0.5 −1 0.5 0 0 0
0 0.5 −1 0.5 0 0
0 0 0.5 −1 0.5 0
0 0 0 0.5 −1 0.5

0.5 0 0 0 0.5 −1









,

L1 =

[

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

]

.

For simulations, we took as initial conditionsxT
0 (0) =

[30 25 15 0 − 10 − 30] and xT
1 (0) = [30 25 15 0].

Those two graphs are balanced, witch implies that consensus
equilibrium value will be defined as the average of initial
conditions presented just before.

The objective is to find the highest value forα (on the
vertical axis) that guarantees algorithm (3) convergence.
Figure 3, as a 3-D representation ofα stability results, shows
the maximum convergence rate satisfying Theorem 1 for
several values ofδ andT , and forL0 andL1, with T ∈ [0, 1]s
andδ ∈ [0, 2]. We can identified a crest for specific values of
(δ, T ) meaning an improved behavior, and the best positive
value ofα is obtained when(δ, T ) = (2, 0.32) and(δ, T ) =
(1.96, 0.09), for graphG0 and graphG1 respectively.

The stability conditions proposed in this article are suffi-
cient but not necessary conditions. Best behavior/response is
obtained for a certain value of(δ, T ), and once it changes,
this leads to a reduction of performances, as it will be shown
in the following.

Figure 4 shows simulations from the classical algorithm
(2) as well as the algorithm (3) consideringL0, L1, and
for several values ofδ and T . The aim here is to compare
systems performances with two different approaches and
justify the interest of the proposed algorithm. Figure 4(a-b)
show simulation results of the classical consensus algorithm.
Figure 4(c-d) show simulation results using the optimal pair
(δ, T ) according to Theorem 1 and recovered on Figure
3.We can see that they correspond to a faster algorithm
when compared with the trivial algorithm. In Figure 4(e-
f), we kept the optimal value ofT and changedδ value.
Finally, for Figure 4(g-h), we kept the optimal value ofδ
and changedT value. In 4(c-d-e-f) we can then see that
convergence rate decreases when compared to the others
results. It’s also possible to observe that the agreement value
for the modified algorithm remains the average of the initial
conditions. Consider nowε = |x(t) − x∞|, as the module
of the error between agents states and the agreement value
x∞. Figure 5 shows the errorε evolution for graphG0 and
G1. We consider the best values of(δ, T ) retrieved before in
Figure 3. Classical algorithm’s performances correspond to
the continuous line as the dotted line shows the behavior of
the improved algorithm. We can than clearly observe that the
algorithm proposed in this article converge more rapidly than
the trivial simple integrator consensus. Analysis of Figure 4-
5 strengthen the efficiency of the proposed approach.
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Fig. 3. Convergence rate of the consensus algorithm for several values of (δ, T ) and for the communication graphsG0 andG1.
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Fig. 4. System’s behavior for different settings

VII . CONCLUSION

The influence oflocal memoryin consensus algorithms for
simple integrator agents have been studied. An optimization
of controller parameters is proposed so that exponential
stability of the solutions is achieved based on discrete-time
Lyaponov Theorem and expressed in terms of LMI. Also,
conditions for improved performances based on Laplacian’s
eigenvalues are provided here. Simulation results show the
efficiency of the proposed algorithm, as well as the conser-
vation of averaging properties. Further work might include
robustness with respect to errors in the synchronisation
clocks.
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