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Abstract— This paper deals with simple integrator consen- the introduction of a delay in the control loop can help to
sus problems. The objective is the design of an improved stabilize a system which would not be stable without it.
consensus algorithm for continuous-time multi-agent systems This have been studied in [8] and [9]. Alstacal memory

using memory effects. The novel algorithm proposes to sample, ffect’ lgorith f h |
in an appropriate manner, part of the multi-agent systems SHECLS ON CONSENsus algorithms periormances have also

information such that the algorithm converges, assuming thatat been studied in [10], considering naturally unstable systems
each instant, agent’s control laws will also consider the sampled and using the stabilizing delay concept (sampled approach)
past information of its neighbors. Stability conditions expressed in order to achieve consensus. Theoretical guarantees for

in terms of LMI's and based on algebraic communication et : ; ;
matrix structure are provided. The efficiency of the method a dl.smbu.ted averaging algorithm with memory are also
provided in [11] and [12].

is tested for different network communication schemes.

|. INTRODUCTION In this article, in order to present better behaviors, we

Networked control systems (NCS) are systems which awgill provide an improved consensus algorithm with local
spatially distributed with a communication network usednemory based on sampling approach. We will prove, in a
between sensors and actuators. Their primary advantagbsoretical way, that the proposed algorithm always improves
include their low cost, reduced weight and power requirestandard performances, and a method to design the algorithm
ments, simple installation and maintenance, and higher rparameters, including the appropriated sampling period T, on
liability. This means NCS's applications can be found in aan "optimal” way is proposed based on a LMI’'s formulation.
large range of areas such as mobile sensor networks ([1J)he communication graphs are supposed to be directed and
remote surgery, haptic collaboration over Internet, multiundirected. This paper is organized as follows: Section I
robot systems ([2]), automated highway systems, averagipgesents the problem treated in this article, as Section 111 will
in communication networks ([3]) and formation control ([4]).be dedicated to the establishment of the appropriated model.
Several results have appeared in recent literature that cdn-Section IV we will motivate our work, and in Section V we
sider systems with different motion models, symmetry o$tability analysis of the algorithm will be provided. Section
communication and network interactions. A recent review o¥| includes illustrating simulation results and performance
the vast literature in the field can be found in [5], [6] andanalysis, and finally, Section VII will present our conclusions
[7]. and indicate possible future research efforts.

A "consensus” algorithm represents an interaction rule
that specifies the information exchange between an dynamiCThroughout the papeR™ denote then-dimensional Eu-

system, oragent and all of its neighbors over the networkClidean space, anR"*™ is the set ofn x m real matrices.

in order to reach an agreement regarding a certain quantlﬁge setS" stands for the set of symmetric matrices of
of interest that depends on the state of all agents. Her

Bnxn_ The superscript?” stands for matrix transposition.
we consider that agents are assumed to obey a simple P P P

i . '€ oy any matrixP in S™, the notationP > 0 means that the
tegrator model. Knowing that classical consensus algor'th"ﬁatrix P is positive definite. For any matrid in R, the

converge with a dec_ay rate equal to the seco_nd S’malIer?‘(StationQHe{A} corresponds to the following sur+ A”'.
eigenvalue of LaplaciarL, we propose to study improved tpo auiy 7 represents the identity matrix. Finally, for any

behaviors for such algorithms. Accelerating the convergenge . s the notation(1); denotes the” line of M and

of synchronous distributes averaging algorithms have beg\r]:(M) represents thét" eigenvalue of\. For the graplG

studied in literature based on two main approaches: op{iu n vertices and edge set given By— {(i, j) : j € N}
mizing the topology-respecting weight matrix SummariZitheadjacency matrixd — A(G) = (ay;) is the_}VxN matrZiX
the updates at each node ([3]) or incorporating memory in ven by a;, — 1, if (i,j) € E anléa-- — 0. otherwise
the distributed averaging algorithm. In this scope, even if for, . degregd,- of ’verte>2z' is defined ag the r'1umber of its
most applications, delays lead to a reduction of performancggighboring \L/ertices iel, — 4 : (i, j) € E. Let A be the
or can even lead to instability, there exists some cases Wh%e>< N diagonal ma',[ri.x 8fd,-’s jT.he7LjapIaci<.em of G is the
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I[I. PROBLEM STATEMENT relevant. One may have consider a constant del&ystead
of the sampling delay. However all valuesmoin the interval
t — 7, t] should be kept in memory whereas only one
ata is held when using the sampling approach. An inherent
assumption is that all agents are synchronized and share
the same clock to ensure that the agents also share the
i (t) = ui(t) —_— N same sampling. For the sake of simplicity, we assumed that
{ ui(t) = D jen, @ij(zi(t) — xi(t)) re{l,.... N}, the sampling process is periodic. This makes sense in the
(1) situation of multi-agents systems. However the latter analysis
where z; represents variables of agent Introducing the could be extended to asynchronous samplings.
vectorz(t) = [z1(t),..,zn(t)]T containing the state of all

A. Consensus Algorithm

In this paper the following problem is addressed. Consid
the classical simple integrator consensus algorithm

agents, we then derive: B. Preliminary definition
i(t) = —La(t) ) In_order t_o_ clar_ify the presentation, a definition of expo-
nential stability will be stated here.
where L is the Laplacian matrix. Definition 1: ([15]) Let « > 0 be some positive, constant,

This algorithm is distributed in the sense that each agepgal number. The system is said to be exponentially stable
has only access to information from its neighbors. Moreoveyith the decay ratev, or a-stable, if there exists a scalar
consensus algorithms can be archived asymptotically if angl> 1 such that the solution(t; o, ¢) satisfies:
only if the graph associated to the Laplaciahas a directed

spanning tree (page 25 [13]). |z (t;to, ¢)| < Blolre 70, 4)
In this paper, we will propose an improved algorithm for
simple integrator agents. The goal is a performance com-  !ll. DEFINITION OF AN APPROPRIATE MODEL

paraison between the proposed and the classical algorithm;This section focuses on the definition of a suitable model-
where memory’s effects on system’s stability will be bringng of the consensus algorithm (3) to analyze its convergence.
forward. Assuming that there exists a constant and positiyehowing that the vectorl is an eigenvector of the Laplacian

scalary such that: matrix associated to the eigenvallyeit is possible to find a
Z aij=p, 1€{l,...,N}. change of coordinates = Wz such that:
JEN; B 6
U(-pl+ AW =] 5 , 5
The previous algorithm is modified into a new algorithm (=ul+4) { 0" 0o ] ®)
shown in Figure 1. To do so, we introduce a periodic
sampling denoted by the sequence of instafitfg x>0 and  wheret/ = | V' | — w1 and U, — (U)n. For graphs

_ _ _ ; ; Us
;Ssugke]ftizzzob;/ 0.andT = t1 —t;. The improved algorithm containing a direcfed spanning tree the Laplacian eigenvalues

are all positive and we denote them by A\, < ... < Ay.
Vt € [ty tos1], @(t) = (=L — §A)x(t) + 6Az(ty) (3) LetalsoB € RW-1x(N-1) he a diagonal matrix with-);.

) ) ) o The following lemma, which is taken from [16], provides an
whereA is the adjacency matrix of the.c_ommunlcatlon graphappropriate way to rewrite (3) based on the properties of the
d € RandT = ty41 — t, > 0 are additional parameters of . 4ix ..
the improved algorithm. From the point of view of agent | arnma 1:The system (3) can be rewritten in the follow-
i, the stater; is available at every time¢. However, both way:
continuous and sampled data from the neighbor agents ofg
agenti are used. a(t) = (=B + 6(B + pD)z1(t) — 8(B + pl)z (t), (62)

Zo(t) = —pza(t) + pza(te), (6b)
) I wherez; € RV71, 2o € R and the matrixB in given in
° (20).
Proof: By the Leibnitz formula, we haver(t;) =
Fig. 1. Bloc diagrams of the classical and the improved algorithms. a:(t) _ fttk :'c(s)ds, for all differentiable functions:. System
(3) can be rewritten as:

Note that if 6 and/orT are taken as zero, the classical t
algorithm is retrieved. In this article, we consider a sampling #(t) = —La(t) — 5A/ &(s)ds. (7)
delay approach, using the time-varying delay defined by b

T(t) = t —tg, for all t € [tg, trs1] introduced in [14] This representation is a way to understand how memory
and used in the context of multi-agent consensus algorithaomponents affect the algorithm. We then rewrite (3) into two
in [10]. From computational point of view, this choice isequations defined by, = U;z € RV=1 andz, = Uz €



RY representing, respectively, thg — 1 first components Note that system’s (12) stability increases 46\, 1,6, T)

and the last component ef Then (3) is rewritten as

EAEE I E Ryt

!
where ié = UAW and A), = (UAW)x. From (5),
simple matrix calculations lead us to
Al B+ul 0
=UAW = UL I= . 8
4] -vaw o[22 0]

Using the Leibnitz formula, (3) can be rewritten as
4(t) = —Bai(t) + 6(B + pul) [} z(s)ds,

f(t) = —0u [} 2(s)ds. ©)

The consensus problem is now expressed into an appro-

decreases. We will prove that by varyimgand T' values
close to zero, we achieve a performance improvement for
Vg1, if

aA(AiJrl ) 5; T)

T < 0, for someé values (13a)
W <0, for some T values (13b)

From (12), by derivation ofA(\;+1,0,T), we have

QAN 0T) __ ainrry

oT
0A(Nit1,0,T iR tOT A
(i1 ) _ +1€’ T(Nig1 + 1) — ﬂ
98 (—Xiy1+b) e b
Xit1 +
ﬁ(/\m + 2b)

priate form to perform stability criteria. In the case of awhen we evaluate the previous equation Tore 0 and for
symmetric network, the matrix/ is an orthogonal mgt}rix d ~ 0, respectively, we have

which meang/ = W7T. Then if the last column of is 5 1,

thenUs; = 1/(6N)T, which means that, corresponds to
the average of the position of all agents. This does not hold —————F— =—

always for asymmetric communication network.

In the sequel, a stability analysis of the algorithm is
proposed for any graph with a directed spanning tree, rep-
resented by the Laplaciabh. Requiring a directed spanning
tree is less stringent than requiring a strongly connected and
balanced graph ([13]). This analysis is composed by two Ag 9AD1T) _
parts, one dealing with the stability of the algorithm anda ST ar
another concerning the agreement of the agents. More par- a5

0A(Nix1,6,T

( 5} ) Ai41 <0
aA()\i+1,(57 T) _ _A7,+1T 1
= T Qe (T 5

_ ()\'H-l + M) <0
)\i+1
= —\;+1 isnegative for all value of, and

AQi1.0.7) s 450 negative for small values of T, we can

ticularly, we will propose a method to choose appropriatel{hen conclude that for small values dfandT" system (12)

the algorithm parametersand for a givenL, considering

tends to converge more rapidly when compare with the trivial

a performance optimisation. Next section will motivate thig/gorithm. The pertinent problem of how to chose theses

study.

IV. DOES THIS ALGORITHM ALWAYS IMPROVE
STANDARD PERFORMANCES

parameters values has been rased here, and will be treated
in the next section.

V. STABILITY ANALYSIS

Assume for the moment that the Laplacian matrix correg Preliminary stability analysis

sponds to a symmetric graph. LBt be the diagonal matrix

of the Laplacian eigenvalues defined before. We know that This section deals with the stability analysis of (6b). The

X2 ... 0
B = : . : (20)
0 ce. —AN
Thus, we establish forall=1,..., N — 1
213(t) = (= Xig1 +b)z1i(t) — bz1i(tr). (11)

with b = 6()\i+1 + ,LL).

By integrating the previous equation, the following re-

following lemma holds.
Lemma 2:The system defined in (6b) is constant for any
sampling periodl” and anyo

Vﬁ, Zg(ﬁ) = 22(0) (16)
Proof: Considerk > 0 and anyt € [ty tr+1[ and any
parameterq’, §. The previous ordinary differential equation
has known solutions of the form

Zg(ﬁ) = 6_6M(t_tk)00 — Zg(tk) (17)

currence equation represents the discrete dynamics of the

algorithm.
21i(trr1) = AXit1, 6, T)z1i(tr), (12)
with
- —Ait1 b
ANit1,0,T) =€ (=Xit1+0)T it '
(Ait1 ) Xp S W vopr

whereC) € R represent the initial condition of the ordinary
differential equation. The initial condition is determined at
time ¢t = ¢;. We then obtairCy = 0 and thus

Vt € [ty thy1], 22(t) = za(tr) = 22(0)

Then, we deduce that is constant [ |

(18)



B. Stability analysis of the consensus algorithm Figure 2. To each graph is associated a Laplacian matrix

Corsider the consensus algorithm (3) rewritten in the forn@iven by
of (6). We can establish

[ -1 0.5 0 0 0 0.5
A1) = A@)z1(t) + Aa(8)z1 (tr), (19) P I T I
. 0= 0 0 05 -1 05 0 )
with A(8) = (-B+§(B+pl)) and A4(8) = —6(B + pl). 0 0 0 05 -1 05
The following theorem holds L o> 000
Theorem 1:Consider the proposed consensus algorithm Li—| 0o -1 1 o
. . ) . 1= 0 o -1 1
(3) associated to a given Laplaciarrepresenting a commu- 1 o0 o 1
nication graph with a directed spanning tree, a giwen 0, )
0>0andT > 0.

For simulations, we took as initial conditiong (0) =
[30 25 15 0 — 10 — 30] and z¥'(0) = [30 25 15 0].
Those two graphs are balanced, witch implies that consensus
Iy + fo(T,0)IIy + he(T,0)II3 < 0, (20) equilibrium value will be defined as the average of initial
conditions presented just before.
<0, (21) The objective is to find the highest value far(on the

Assume that there exi$t > 0, R > 0 andS; andX € S"
and two matricesS, € R"*" and N € R?"*" that satisfy

* —9a(T,T)R vertical axis) that guarantees algorithm (3) convergence.
where Figure 3, as a 3-D representationcobtability results, shows
I, = 2He{MTP(My + aM;)} — MES, M; the maximum convergence rate satisfying Theorem 1 for
“9He{MF Sy My) — 2He{ N Ms), several values of andr, ant_j _forLO andLq, with T € [0,1]s
[y = MIRMo + 2He{M{ (S1 M3 + SaMs)}, andé € [0, 2].. We can identified a crest for specific values_ pf
Iy = MY X Mo, (6,7) meaning an improved behavior, and the best positive
value of« is obtained wher{d, T') = (2,0.32) and (4, T") =
and My = [ A(0) Aa(0) |, My = [I 0], My = (1.96,0.09), for graphG, and graphG; respectively.
[0 I],Ms=[1 —I].The functionsf,, go andh, The stability conditions proposed in this article are suffi-
for all scalarsI” and T € [0 T are given by cient but not necessary conditions. Best behavior/response is

obtained for a certain value @b, T), and once it changes,

T,7) = (e2T=7) —1)/2 . . -
fo(Ty7) = (¢ )/2a, this leads to a reduction of performances, as it will be shown

o T — o2aT 1— —2aTt 2 X .
9a (T, 7) 61 egﬂ_f 221 @ (22) " in the following.
ha(T,7) = 3 [ aT € } ' Figure 4 shows simulations from the classical algorithm

Then, the consensus algorithm (3) with the paraméter (2) as well as the algorithm (3) consideririg, L., and
and the sampling perio@ is thusa—stable. Moreover the for several values of andT'. The aim here is to compare

consensus equilibrium is given by .sysFems p_erformances with two differept app_roaches and
justify the interest of the proposed algorithm. Figure 4(a-b)
x(00) = Uzx(0). (23)  show simulation results of the classical consensus algorithm.

Proof: The proof in based on the Lyapunov TheorenFigure 4(c-d) show simulation results using the optimal pair
for discrete-time system using the continuous-time model @b, 7') according to Theorem 1 and recovered on Figure
the multi-agent systems. For simplicity the proof is omitted.We can see that they correspond to a faster algorithm
but is presented in [17] and is similar to [10]. B when compared with the trivial algorithm. In Figure 4(e-

f), we kept the optimal value of’ and changed value.
Finally, for Figure 4(g-h), we kept the optimal value &f
and changed” value. In 4(c-d-e-f) we can then see that
convergence rate decreases when compared to the others
results. It's also possible to observe that the agreement value
for the modified algorithm remains the average of the initial
conditions. Consider now = |z(t) — x|, as the module
of the error between agents states and the agreement value
\® . Figure 5 shows the errar evolution for graphG, and
G1. We consider the best values @t 7') retrieved before in

Graph 0 Graph 1 Figure 3. Classical algorithm’s performances correspond to
the continuous line as the dotted line shows the behavior of
the improved algorithm. We can than clearly observe that the
algorithm proposed in this article converge more rapidly than

Consider a set of six and four agents connected througthe trivial simple integrator consensus. Analysis of Figure 4-
respectively, the undirected and directed graphs shown fstrengthen the efficiency of the proposed approach.

VI. EXAMPLES

Fig. 2. Corresponding graphs of the matrides and L1 .
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