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Abstract— In this article, we consider the problem of coordi-
nating a number of vehicles crossing a traffic intersection. The
proposed solution is based on a receding horizon formulation
with a pre-defined decision order. In this approach, local
problems are formulated for each vehicle, which are divided
into a finite-time optimal control problem, where collision
avoidance is enforced as terminal constraints, and an infinite
horizon control problem, which can be solved offline. Feasibility
conditions for a given decision sequence are also derived and
simulation results are presented.

I. INTRODUCTION

Cooperative driving systems enable vehicles to adapt their
motion to the surrounding traffic situation, by utilizing in-
formation communicated by other vehicles and infrastructure
in the vicinity. Some benefits of cooperative driving include
improvements on the efficiency and safety of traffic flow, reduc-
tion of traffic congestion, reduction of fuel consumption and
associated positive environmental and economic impacts [1].

This article focuses on cooperative conflict resolution prob-
lems for autonomous vehicles at road intersections. The reader
can refer to [2] for an elaborate survey of conflict resolution
approaches. In particular, this problem has been extensively
studied in the context of air traffic control [3], [4]. Further-
more, conflict resolution at traffic intersections has also been
studied in [5]–[8]. We limit our attention to intersections where
conventional traffic control devices (stop signs or traffic lights)
have been removed. An illustration of the considered scenario
is shown in Fig. 1, where the vehicles, equipped with com-
munication devices, have to coordinate and agree on how to
cross the intersection without collisions. Ideally, by exploiting
their communication capabilities, the vehicles should be able
to coordinate in order to, e.g., guarantee Quality of Service
(QoS) requirements, minimize the aggregate fuel-consumption
(by, e.g., slowing down a light vehicle instead of a bus or a
heavy truck). In [6], [9], an active control system is presented,
able to identify the point of no return with respect to a collision
and to take overriding measures. A scheduling viewpoint is
also presented in [10], [11]. Finally, [5] provides provably safe
scheduling algorithms for intelligent intersections, where time-
slot assignment is established by the intersection infrastructure
itself.

In this paper, we consider a fully decentralized solution to
the intersection conflict resolution problem, suitable for fully
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autonomous vehicles (contrary to [6], [9], which focus on inter-
vention). We abstract from the (many) implementation issues
and focus on the fundamental aspects of the underlying deci-
sion making problems. Our solution relies on a cooperatively
pre-determined decision order (enabling sequential decision
making) combined with a receding horizon implementation to
compute optimal collision-free trajectories (contrary to [11],
which focuses on feasible crossings sequences and not opti-
mality). This work builds on our previous paper [12], by con-
sidering general decision orders and the extension to receding
horizon control. To the best of the authors’ knowledge, neither
a sequential optimization approach or an implementable reced-
ing horizon formulation has been provided so far in literature
for this type of scenario.

II. PROBLEM STATEMENT
Consider N > 1 autonomous vehicles/agents approaching

a traffic intersection as shown in Fig. 1. For each agent i, we
assume that:
• a path is given and is known;
• the assigned path is perfectly followed;
• the acceleration along the path can be varied;
• all vehicles have synchronized clocks and are located

before the intersection at the initial instant.
Without significant loss of generality, we do not consider the
case where several vehicles approach the intersection on the
same road.

Let xi = [pi vi]
T ∈ Xi = Pi × Vi denote the state of each

vehicle i ∈ N = {1, . . . , N}, where pi ∈ Pi, vi ∈ Vi and Pi

and Vi represent the sets of all admissible (scalar) longitudinal
positions and velocities along the path, respectively. Each agent
is modeled as a discrete time double integrator

xi(t+ 1) = A xi(t) +B ui(t), (1)
where A = [1 1; 0 1] and B = [0 1]

T .
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Fig. 1. Illustration of the considered scenario. Several autonomous vehicles
approach an intersection defined by a range of positions over pre-defined
paths. Vehicles are supposed to approach the intersection with a desired
speed, where the variable of control is the longitudinal acceleration.



Furthermore, we assume that a full measurement of the state
xi(t) is available at all times. Throughout the rest of the article,
t is considered to be the current time such that (·)(t+k) denotes
the predicted value of variable (·) at time t + k, computed at
time t.

As a part of the assigned driving task, each agent i has a
given reference (i.e., desired) velocity denoted by vdi ∈ Vi.
Furthermore, let x = [xTi , . . . , x

T
N ]T , y = [yTi , . . . , y

T
N ]T , u =

[uTi , . . . , u
T
N ]T , vd = [vdi, . . . , vdN ]T denote the state, the

input, the output, and the desired velocity vector, respectively,
for the entire system composed of N vehicles. Finally, each
vehicle is assumed to be subject to:

• Actuator limitations: To ensure that the control input
ui (longitudinal acceleration) is within the admissible
actuator range, the following constraints are introduced

umin
i ≤ ui(t) ≤ umax

i , ∀t ≥ 0, (2)

which yields Ui = { ui| ui ∈ [umin
i , umax

i ] }.
• State constraints: The vehicles’ velocities are constrained

such that

0 < vmin
i ≤ vi(t) ≤ vmax

i , ∀t ≥ 0, (3)

which yields Vi = { vi| vi ∈ [vmin
i , vmax

i ] }.

The following definitions are also introduced.

Definition 1 (Critical set): For each agent i ∈ N , let Cri
denote the critical set, i.e., the set of all positions along the
path where a collision is possible and defined as

Cri , { xi ∈ Xi| pi ∈ [Li, Hi] } , (4)

where Li < Hi are bounds on the position along the path of
vehicle i defining the intersection. Note that these parameters
are dependent on the geometry of the workspace and are time-
invariant.

Definition 2 (Occupancy interval): For each agent i ∈ N ,
the occupancy interval of the intersection for a given predicted
control sequence can be expressed as

Γi,t (xi(t), ui(t), ui(t+ 1), . . .) = {k| xi(k) ∈ Cri}, (5)

where xi(t + 1) is given by (1) and {ui(t), ui(t + 1), . . .}
denotes a control sequence. In order to simplify the notation,
we will consider throughout the rest of the paper Γi,t as the
shorthand form of Γi,t (xi(t), ui(t), ui(t+ 1), . . .).

From Def. 2 the following collision avoidance constraint
follows

Γi,t ∩ Γj,t = ∅,∀ i, j ∈ N , j 6= i. (6)

For the sake of clarity, if at time t the condition pi(t) < Li

holds, we will state that agent i is “before” the critical set, while
if pi(t) > Hi holds we will say that the agent is “after” the
critical set. Finally, we introduce the polytopes Ωi and Υi as
the set of states corresponding to the vehicle being before and
after the intersection, respectively, and are defined as

Ωi = {xi| vmin
i ≤ vi ≤ vmax

i , 0 ≤ pi ≤ Li},

and Υi = X/{Cri ∪ Ωi}.

III. CENTRALIZED PROBLEM FORMULATION
Consider the following global cost function

Jcentr,t =
∞∑
k=0

‖v(t+ k)− vd‖2Q + ‖u(t+ k)‖2R, (7)

where, R � 0 and Q � 0 are block diagonal weighting matri-
ces of appropriate dimensions penalizing the control signal and
the deviation of the agent’s speed from the desired value, re-
spectively. Note, however, that other appropriate metrics could
be considered to evaluate the performance of the system. The
formal centralized problem is given by

min
[u(t),u(t+1),...]

Jcentr,t (8)

subject to: (1), (2) and (3), ∀ i ∈ N
(6), ∀ i, j ∈ N , j 6= i.

Problem (8) is formulated over an infinite time horizon.
But even a formulation over a finite time horizon W , yet
large, might be computationally prohibitive. In the sequel, we
propose a low complexity decentralized solution based on a
pre-defined decision order.

IV. DECENTRALIZED PROBLEM FORMULATION
Due to the collision avoidance constraints (6), problem (8)

is non-convex and computationally prohibitive. However, a
low complexity approximate solution of problem (8), based on
the sequential solution of 2N − 1 convex problems, can be
formulated by assuming the existence of a decision order. In
the context of this article, a decision order defines the sequence
in which the different agents will solve their local optimization
problems. The following definition is introduced.

Definition 3 (Decision order): LetN = {1, . . . , N} be the
set of vehicles and O a permutation of N defined according
to a given criterium. Then O is considered to be the decision
order, where (O)m denotes the m-th element in the order.
Furthermore,O can be partitioned, with respect to each vehicle
i = (O)m, into Ob

i and Oa
i : the first set contains the indices of

all agents j 6= i appearing before i in the decision order, while
the second includes the indices of the vehicles appearing after
agent i.

If the intersection is already allocated to an agent j during
some time interval Γj,t, only two options are therefore valid
for any other agent: (i) crossing the intersection before; (ii)
crossing the intersection after. Extending this line of thought, a
decentralized scheme can be set up where each agent in the de-
cision order restricts its choices to pass the intersection before
or after all the preceding vehicles in the decision order. Note
that this approach is no longer optimal, since not all crossing
orders are explored1. Note that the computational complexity
of the proposed algorithm is linear with the vehicles number
N , relying on the sequential computation of 2N − 1 quadratic
programming problems. For the general case of N vehicles
(with N ! potential crossing orders), the proposed approach
reduces the number of possible crossing orders to 2(N−1) and
considers only one of them.

1As an example, take the three vehicle case, with a decision sequence
O = {1, 2, 3} . Considering the proposed algorithm, only four possible
crossing orders {1,2,3}, {3,1,2}, {2,1,3} and {3,2,1} are considered,
whereas sequences {1,3,2} and {2,3,1} are discarded.



A. Formulation of two convex optimization problems
Keeping the same performance metrics as in (7), the local

objective associate to each agent i ∈ N is given by

Jd
i,t =

W∑
k=0

‖vi(t+ k)− vdi‖2Qi
+ ‖ui(t+ k)‖2Ri

, (9)

where W is a very large prediction horizon and Ri � 0 and
Qi � 0 are weighting matrices of appropriate dimensions. We
can informally define the following two problems:
• Problem A (Informal Statement): Find the optimal control

policy such that agent i enters the intersection only after
all preceding agent(s) j ∈ Ob

i have exited.
• Problem B (Informal Statement): Find the optimal control

policy such that agent i exits the intersection before any
preceding agent(s) j ∈ Ob

i enters.
For agent i, let Ψi,t =

⋃
j∈Ob

i
Γj,t be the union of the

occupancy intervals of all preceding vehicles in O. Collision
avoidance is then ensured if

1) For Problem A, the earliest entry time for agent i is given
by

tai,t = max
m∈Ψi,t

{m}+ δai . (10)

2) For Problem B, the latest exit time for agent i is given by

tbi,t = min
m∈Ψi,t

{m} − δbi . (11)

Here δbi , δ
a
i ∈ Z+ are safety time gaps between two

occupancy intervals. We are now ready to formulate Problems
A and B as two convex optimization problems where collision
avoidance is enforced by state constraints. Thus, we have

Problem A:
min

[ui(t),ui(t+1),...]
Jd
i,t (12)

subject to: (1), (2) and (3),
pi(t

a
i,t) ∈ Ωi.

Problem B:
min

[ui(t),ui(t+1),...]
Jd
i,t (13)

subject to: (1), (2) and (3),

pi(t
b
i,t) ∈ Υi.

B. Feasibility analysis
By analysing problems (12) and (13), one can easily con-

clude that the proposed conflict resolution algorithm relies on
two optimization problems over two different horizons: one
guaranteeing that a vehicle i can reach Υi in (tbi,t−t) steps; the
other ensuring that the agent can remain within Ωi in (tai,t − t)
steps. The following definition is taken from [13] and is used
in the sequel to derive feasibility conditions of a given decision
order.

Definition 4 (One-step and R-step controllable sets):
Consider a system subject to external inputs given by

x(t+ 1) = f(x(t), u(t)),

where x(t) ∈ X,u(t) ∈ U, and t ≥ 0. We denote the one-step
controllable set to the set T as

Pre(T ) , {x ∈ X : ∃u ∈ U s.t. f(x, u) ∈ T }.

Cri
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vmax
i

vmin
i

Li Hi
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Fig. 2. Illustration of the proposed control strategy. With respect to the
measured state xi(t), the decomposition of the two possible trajectories is
presented: the solution of a finite-time optimization problem guaranteeing
collision avoidance; the solution of an infinite-time control problem to be
computed offline.

Furthermore, the R-step controllable set KR(T ) to the set T is
defined recursively as

Km(T ) , Pre(Km−1(T )) ∩X, K0(T ) = T ,
where m ∈ {1, . . . , R}.

For a given decision order, the following holds.

Proposition 1 (Local feasibility): Let the state of an agent
i ∈ N , driven by dynamics (1), be xi(t) ∈ Xi at time t. Given
a decision sequence O, agent i has a feasible solution if and
only if at least one of the following conditions is satisfied

xi(t) ∈ K
(tai,t−t)
i (Ωi), (14a)

xi(t) ∈ K
(tbi,t−t)
i (Υi), (14b)

It follows from Def. 4 that if condition (14a) is satisfied, then
∃ui ∈ Ui such that vehicle i can remain within Ωi in (tai,t − t)
steps. On the other hand, if condition (14b) is satisfied, then
there exists a feasible control input that can drive the system
to the target set Υi in (tbi,t − t) steps. Thus, if one of these
is satisfied, there exists at least one feasible control sequence
satisfying the safety constraints.

Proposition 2 (Global feasibility): Consider a set of N sys-
tems driven by dynamics (1) such that x(t) ∈ X . At time t,
a decision order O is feasible if and only if Proposition 1 is
satisfied for each element in O, except the first one.

Proposition 1 and Proposition 2 present local and global
feasibility conditions for a given decision orderO, respectively.
Though one might argue that previous results present a straight-
forward feasibility analysis, it is important to point out that the
feasibility of an order can be verified by set-membership tests
according to Proposition 1 and 2. This has obvious implemen-
tation advantages, especially considering that the derivation of
the backward reachable sets can be locally pre-computed. In
the next section we develop a novel problem formulation that
can be cast in a receding horizon framework.

V. A RECEDING HORIZON APPROACH
Given a decision order O, we have proposed a sequential

approach which involves solving the two convex problems (12)
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Fig. 3. Illustration of the control principles: (a) for problems A1 or B1,
a optimal solution composed of a finite time component and a infinite-time
part; (b) illustration of the time span associated with problems (15) (dark
grey) and (16) (light grey).

and (13). In practical scenarios however, agents may be af-
fected by uncertainties and model mismatch, making a receding
horizon framework necessary, where the procedure is repeated
at each time step and where each agent applies only the first
element of the control sequence.

Based on the developments of the previous section, we will
formulate in the sequel a low complexity approximate solution
of the infinite time horizon problem (8). More precisely, we
will show how one can break up the optimization procedure in
an online finite horizon optimal control problem and an offline
infinite horizon optimization problem. This concept, illustrated
in Fig. 2, will be developed in the next two sections.

A. A separation principle

Let Ji,t be the infinite time local cost equivalent to (7), such
that Ji,t = Jf

i,t + J∞i,t .We then have

Jf
i,t =

M−1∑
k=0

‖vi(t+ k)− vdi‖2Qi
+ ‖ui(t+ k)‖2Ri

,

and

J∞i,t =
∞∑

k=M

‖vi(t+ k)− vdi‖2Qi
+ ‖ui(t+ k)‖2Ri

,

where M denotes a finite prediction horizon (to be defined
later). This yields that the cost function (9) can be decom-
posed into two parts, allowing us to formulate the solution to
problems (12) and (13) as: (i) a finite time horizon problem
enforcing collision avoidance; (ii) an infinite horizon problem.
More precisely, we propose to enforce collision avoidance as
terminal constraints over the finite time optimization problem.
We can then formulate the following problem

min
[ui(t),ui(t+1),...]

Jf
i,t (15)

subject to: (1), (2) and (3),
xi(t+M) ∈ Ti,

where Ti denotes a given target set, to be appropriately defined
in order to enforce collision avoidance in a identical way as in
(12) and (13). Furthermore, define the optimal solution of (15)
as uf∗i,t = {u∗i (t), u∗i (t+ 1), . . . , u∗i (t+M − 1)} and Jf∗

i,t as
the associated cost.

If the generation of collision-free trajectories can be guar-
anteed by the computation of the solution of (15), then the
evolution from any point beyond t + M is independent of any
collision avoidance constraints. Thus, we can formulate a linear
quadratic regulation problem with constraints (CLQR) given as

min
[ui(t+M),ui(t+M+1),...]

J∞i,t (16)

subject to: (1), (2) and (3),
xi(t+M) = x∗i (t+M), (17)

where u∞∗i,t = {u∗i (t+M), u∗i (t+M + 1), . . .} denotes the
optimal solution of (16) and J∞∗i,t the associated cost. Note that
equality (17) sets the initial state of the optimization problem
(16), where x∗i (t+M) is the predicted state xi at time t+M
if the optimal solution uf∗i,t of (15) is applied to the system.

We showed that conflict resolution algorithms at intersec-
tions rely now on two optimization problems over two different
horizons. Due to this asymmetric structure, its important for
each agent to be able to correctly compare the possible trajec-
tories guaranteeing collision avoidance with respect to all pre-
vious vehicles on the decision sequence. Thus, it follows that
at time t the optimal control sequence ensuring a collision-free
trajectory is given by u∗i,t = {uf∗i,t , u∞∗i,t }, and the associated
cost given by

J∗i,t = Jf∗
i,t + J∞∗i,t . (18)

Based on two different optimization problems, (18) provides
now a logical and sound metric for performing comparisons on
the available possibilities and the related costs, for a given agent
i. The next section will discuss a receding horizon framework
for this approach.

B. A reduced complexity receding horizon approach
By assuming that a decision order is given, we have shown

how to reduce the highly complex problem (8) into the simple
and scalable problems (12)–(13) and ultimately (15)–(16). By
definition, receding horizon control (RHC) requires to solve an
open-loop optimal control problem as a function of the current
state at each sampling time. Therefore, it is crucial to reduce
the computational burden for obvious implementation reasons.
Based on the results of [13], it is possible to pre-compute in a
offline manner the explicit feedback policy solving (16) that
provides the optimal control for all states, avoiding solving
online a large quadratic program. Indeed, due to its computa-
tional attractiveness, this technique is useful for a wide range
of practical problems where the computational complexity of
online optimization can be prohibitive.

In a receding horizon approach, we will assume that a full
measurement/estimate of the state xi(t) is available at the
current time t. Furthermore, assume also that a decision order
O is available and that the explicit solution of (16) has been
computed a priori, in an offline manner. Consider agent i =
(O)m, where m > 1. With respect to vehicles in Ob

i , agent i
will solve two problems:



• Problem A1:
– Solve (15) when M = (tai,t − t) and Ti = Ωi;
– Evaluate the cost related to (16);
– Compute cost (18).

• Problem B1:
– Solve (15) when M = (tbi,t − t) and Ti = Υi;
– Evaluate the cost related to (16);
– Compute cost (18).

These problems form the basis of the proposed receding
horizon approach, detailed in Algorithm 1. Furthermore, an
illustration is presented in Fig. 3. The algorithm essentially
operates as follows. At each time t, agent i (which has order
m in O) will solve problems A1 and B1, either of which may
be infeasible (associated with a cost (18) equal to +∞). The
control u∗i,t with the lower cost is selected and the first element
is applied to the system. Oncem = N , all vehicles wait for t to
increase. The optimization routine will then be repeated at time
t + 1, based on the new state xi(t + 1), yielding a receding
horizon control strategy. Note that if both problems A1 and
B1 are infeasible, this necessarily means that the proposed
approach is not feasible for the order O and therefore an
emergency procedure should be triggered. Furthermore, it is
important to mention that as t evolves, the finite-time optimal
problem (15) is performed over a shrinking horizon as the
vehicle approaches the intersection. Thus, it follows that the
optimal control sequence u∗i,t will eventually become equal to
the solution of (16), pre-computed in an offline manner.

By taking advantage of the intrinsic structure of the problem,
the control Algorithm 1 presents several advantages:

• The online optimization horizon is reduced and shrinks as
time t evolves;

• For a given decision order, collision avoidance is enforced
through terminal constraints on a finite-time optimal con-
trol problem;

• The control formulation allows the derivation of feasibil-
ity conditions for a given sequence.

Algorithm 1 Receding horizon control law computation at
time t for agent i = (O)m, where m > 1

measure the state xi(t) at time t;
collect Γj,t, ∀j ∈ Ob

i ;
compute tbi,t and tai,t;
verify feasibility of Problem A1 and B1

if xi(t) 6∈ K
(tai,t−t)

i (Ωi) and xi(t) 6∈ K
(tbi,t−t)

i (Υi)
then “Unfeasible problem”

Trigger emergency measure;
else

solve Problem A1 and/or Problem B1;
compare Ji,t

∗ and choose the
solution ui,t

∗ with lower cost;
apply the first element of ui,t

∗ to the system;
broadcast Γi,t to all elements of Oa

i ;
wait for the new sampling time t + 1 and until
all preceding vehicles in the order have executed
Algorithm 1.
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Fig. 4. Evolution of the agents’ trajectories according to Algorithm 1. The
intersection is represented by the horizontal red lines and the black and grey
dashed lines represent the entrance and exit time instants, respectively.

VI. SIMULATION RESULTS

This section presents simulation results illustrating the per-
formance of the proposed control strategy. Without loss of gen-
erality, we will consider in the sequel a system of three vehicles
(N = 3), as represented in Fig. 1. Here, the safety parameter δ
has been chosen as δ = [ δb δa ]T = [1 1]T and Li = 100 and
Hi = 130, ∀i ∈ N . Furthermore, in order to consider different
types of vehicles, vehicles are heterogeneous with respect to
the control constraints such that Ui 6= Uj , ∀i, j ∈ N . For
each agent, the initial state is given by xi(0) = [pi(0) vdi]

T

such that x1(0) = [7 8.2]T , x2(0) = [4 5.95]T , x3(0) =
[70 3.3]T . This yields Γ1,t = {10 − 15},Γ2,t = {17 − 21}
and Γ3,t = {10 − 18}. If no collision avoidance procedures
are implemented, i.e., if all agents respect their pre-defined
trajectory, then a collision can occur from t = 10 until t = 21.

We will also assume a decision order defined according
to [12]. More precisely, such order tries to incorporate the
individual degree of freedom of each agent defined by the “time
to react” of each vehicle prior to a collision. By considering that
the agent with the lower time to react has, among all vehicles,
the lowest individual degree of freedom, the proposed policy
therefore aims to compensate for the natural drawbacks of a
sequential approach. For the sake of simplicity and without loss
of generality, we will assume in the sequel that an order O =
{1, 3, 2} has been cooperatively defined at the initial instant
and remains constant (and is therefore persistently feasible)
until the conflict resolution procedure terminates2.

Fig. 4 shows the simulation results of the proposed RHC
control strategy. Since disturbances and model mismatch are
not considered in this work, the RHC implementation of Algo-
rithm 1 is equivalent to the open-loop solution from time t. In
particular, Fig. 4 presents the trajectories of the different vehi-
cles according to the proposed control protocol. In this figure,
the critical set Cri is represented by the horizontal red lines and
the black and grey dashed lines represent the entrance and exit
times, defining Γi,t,∀i ∈ N . One can observe that a collision
is avoided, since the different Γi,t never intersect. We recall
that in the proposed approach state constraints at specific time
steps are enforcing collision avoidance conditions. According

2Note that the chosen decision order does not necessarily determine the
real crossing order. Furthermore, agents that clear the intersection are in
practice removed from the decision order.



Agent Cost of (15) Cost of (16) Cost of (18)

2 Prbl. A1
Prbl. B1

146.01
∞

8.49
−

154.5
∞

3 Prbl. A1
Prbl. B1

34.81
56.96

2.51
7.40

37.32
64.36

TABLE I
EVALUATION OF THE COSTS FOR EACH AGENT

to Algorithm 1, agent 1 (with highest priority) keeps its desired
trajectory, crossing the intersection during 12 < t < 15.
Based on this information, agent 3 solves problems A1 and
B1, choosing the best local solution. The same procedure is
performed by agent 2, according to Algorithm 1. Numerical
values for the costs of the different possibilities are presented
in Table I.

Finally, Fig. 5 presents the local feasibility results of prob-
lems A1 and B1. According to the chosen order O, we have
tb2,t = 11, ta2,t = 26, tb3,t = 11 and ta3,t = 16. Due to the
structure of the control strategy, the feasibility of a given order
can easily be verified by set-membership tests. From Fig. 5(b),
it follows that both problems A1 and B1 have a feasible
solution from the point of view of agent 3, since x3(t) ∈
{K11

3 ∩ K16
3 }. On the other hand, one can conclude from

Fig.5(a) that problem (15) has no feasible solution, therefore
invalidating the possibility of agent 2 crossing the intersection
before the two other agents. Note that such a conclusion is also
supported by the data presented in Table I.
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Fig. 5. Local feasibly results, according to Proposition 1, of a decision
order O = {1, 3, 2} for: (a) Agent 2 (b) Agent 3. If the vehicle’s state
belongs to the light-grey area, then there exists a feasible control sequence
allowing the vehicle to cross the intersection before the preceding agents
in O, while if the vehicle’s state belongs to the dashed-limited area, then
there exists a feasible control sequence allowing the vehicle to cross the
intersection after the preceding agents.

VII. CONCLUSIONS

We presented a cooperative conflict resolution approach for
traffic intersections, based on a sequential approach. More
precisely, we proposed a decentralized solution where the local
optimization problems are divided in two parts: an infinite
horizon solution that can be calculated offline; a finite-time
optimal control problem where collision avoidance is enforced
as terminal constraints. The proposed solution offers several
advantages such as low complexity and scalability. In fact, its
per agent complexity with respect to the number of agents
remains constant since collision avoidance is enforced through
local state constraints at given time steps. Furthermore, due
to its low computational requirements, the proposed structure
can be cast into a RCH framework. Indeed, by pre-computing
offline the explicit feedback policy (16), we avoid the online
solution of a large quadratic program. Finally, the novel control
formulation has also the merit of allowing the derivation of
(easily verifiable) feasibility conditions for a given sequence.
Though the proposed receding horizon approach assumes the
existence of a decision order, how to efficiently define such an
order guaranteing persistent feasibility is still an open problem
and is outside of the scope of this paper. One possible criterion
was developed in [12], for example. To complement these
results, future research should focus on the optimality and
feasibility analysis of such approaches.
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