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Abstract— We consider a cooperative conflict resolution prob-
lem at traffic intersections. Our goal is to design a least
restrictive supervisor able to identify the optimal corrections
to a human-decided input with respect to a given performance
index, while keeping the system safe. Here, safety is formulated
in terms of a maximal safe controlled invariant set. Leveraging
results from scheduling theory, we characterize the preorder of
the optimal solution set and propose an efficient optimization
algorithm providing Pareto optimal solutions. We illustrate the
application of the proposed algorithm through simulations in
which vehicles crossing an intersection are optimally overridden
by the supervisor only when necessary to maintain safety.

I. INTRODUCTION

Transportation systems are increasingly relying on commu-
nication technologies and automated control in order to enable
safer, smarter, and greener solutions [1]. Recent research has
been focusing, among others, on the prevention and mitigation
of accidents, reduction of greenhouse gas emissions, and effi-
ciency in terms of energy and infrastructure utilization.

A particular area of interest is collision avoidance at traffic
intersections [2]. Motivated by increasing levels of autonomy
in road vehicles, much research effort has been focussed on
cooperative and non-cooperative conflict resolution for fully
and semi-automated vehicles. Several authors have recently
used rule-based approaches and exploit the multi-agent systems
paradigm as, for instance, in [3]–[9]. Also, [10]–[14] proposed
coordination strategies based on Model Predictive Control
(MPC). In particular, [10] exploits the structure of a centralized,
finite-time optimal problem to propose an approximate solution,
while [11], [12] considered a fully decentralized approach based
on sub-optimal decision-making heuristics.

All the above references assume that a controller is either
fully in charge of the vehicles, or it can set conservative bounds
within which the drivers’ decisions are constrained. In this
paper we take a different approach. We assume that humans
are in charge of driving each car, and we aim to design a
supervisor which must let the drivers choose any control action,
as long as this does not lead to a collision. When (and only
if) this is not the case, the supervisor must correct the human
decision, approximating it as best as possible while keeping
the system away from conflict states. Note, however, that this
solution could be coupled, in a multi-layer control structure,
with existing algorithms for autonomous vehicles, by ensuring
safety verification of trajectories generated by a higher level
decision system.

The problem of least restrictive supervision for collision
avoidance is discussed, among others, in [15]–[23], and is typi-
cally set in a framework of verification of safety specifications.
Though standard general purpose algorithms exist, they are
limited by numerical complexity to handle problems involving
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just a few agents (typically two). A set of efficient solutions for
the intersection collision avoidance problem was proposed in
[18] using Scheduling Theory, and extended to more complex
scenarios in [20]–[23]. Note that these papers ignore in their
design optimality arguments, in the sense that, when the drivers’
input is overridden, no attempt is done to approximate the
drivers’ intent. Clearly, this can lead to unnecessarily aggressive
decelerations/accelerations.

This paper addresses this issue by providing optimal, least
restrictive supervisory control for a group of human-driven
vehicles. Our approach is based on the solution of two separate
problems: (i) the Verification Problem, determining if there
exists an input signal that leads all agents safely through the
intersection; and (ii) the Supervisor Problem, returning a safe
and optimal approximation of the drivers’ intent if the desired
input violates safety conditions. By formulating the Supervisor
Problem as a multi-objective optimization problem, we identify
a preorder of the set of optimal solutions, and show how to
iteratively perform scheduling optimization by solving the Veri-
fication Problem. To determine the least restrictive set of control
actions, we exploit the notion of maximal controlled invariant
set (MCIS) and the least restrictive feedback map that keeps the
system inside this set. Note that determining membership in the
MCIS was proved to be NP-hard in the case of some collision
avoidance problems in [18], [24]. Nevertheless, approximate
solutions exist guaranteeing bounded errors with respect to the
exact one.

The paper is organized as follows. Section II describes the
dynamic model; Section III provides the problem formulation;
in Sections IV and V we formulate the single and multi objec-
tive analog of the supervisor problem, respectively; finally, we
discuss a way to trade overall performance of the supervisor
with restrictiveness in Section VI. All results are illustrated by
simulations in Section VII.

II. MODEL AND NOTATION

Consider the system ẋ = f(x,u), y = h(x), where
x ∈ X ⊆ R

rn is the state of n agents moving on n different
paths (such as in Fig. 1), with a r-order dynamics, y ∈ R

n is the
vector of the positions of the agents along their paths and u is a
control input. The previous system is given by the parallel com-
position of n different systems which describe the longitudinal
dynamics of each agent, given by ẋi = fi(xi, ui), yi = hi(xi).
We assume that the individual systems are monotone [25], with
R+ (the nonnegative real line) as the positivity cone of yi, and
that the full system has unique solutions. Throughout the text,
the symbols xi, yi and ui will be used indifferently to denote
vectors (as above) and signals. The correct interpretation will be
clear from the context. The values of x and y at time t, starting
from x0 and with input signals u, are denoted x(t,u,x0) and
y(t,u,x0). The functional space of the input signals ui(t) and
u are Ui and U ⊂ R

n, respectively, and the set Ui is compact,
with a unique maximum ui,max and minimum ui,min. We also
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Fig. 1. Illustration of the considered scenario. Several human-driven
vehicles approach an intersection following pre-defined paths.

assume that ẏi is bounded to the nonnegative interval [0, ẏi,max]
for all i and that limt→∞ yi(t, ui,max) = ẏi,max.

III. PROBLEM STATEMENT

We assign to each agent an open interval (ai, bi), which
represents the span of the intersection along the agent’s path,
see Fig. 1. Note that this interval must account for the physical
size of the agent and of the intersection. A collision occurs
when two agents verify the conditions yi(t) ∈ (ai, bi) and
yj(t) ∈ (aj , bj) at the same instant t. We call Bad Set the subset
B ⊂ R

n of collision points, defined as: B :=
{
y ∈ R

n :
yi ∈ (ai, bi) ∧ yj ∈ (aj , bj), for some i �= j

}
. Our approach

is based in two main problems: the Verification Problem and the
Supervisor Problem. Their formal definition is given as follows.

Problem 1 (Verification Problem (VP)). Given the initial con-
ditions x0 determine if there exists an input signal u which
guarantees that y(t,u,x0) /∈ B for all t ≥ 0.

A computationally efficient solution to VP was proposed in
[18], [23] through a reduction to a job scheduling problem. The
exact solution is, in general, NP-hard [18], but approximations
with guaranteed error bound are available, which allow to solve
the Verification Problem for very large systems.

The subset of X of all initial conditions which satisfy the
Verification Problem is known in the literature as the Maximal
Controlled Invariant Set (MCIS) [26]. As long as the system’s
state remains in the MCIS, there exists an input which avoids
all collisions. Therefore, the role of the supervisor is to ensure
that the state never leaves the MCIS, and a least restrictive
supervisor should do so by modifying the input selected by the
user (in our case, by the drivers) as little as possible and only if
strictly necessary. To formally express this we use the tangent
cone at x to the MCIS, denoted Tx MCIS, which is the set of all
vectors v such that

lim
xk→x,xk,x∈MCIS

xk − x

‖xk − x‖ =
v

‖v‖ .

Calling udes : R+ → R
n the drivers’ intent and u : R+ →

R
n the input returned by the supervisor, we can formalise the

Supervisor Problem as follows:

Problem 2 (Supervisor Problem). Given the current state x0

and the input signal udes, return u such that f(x0,u) ∈
Tx MCIS and such as to minimize a cost function J(udes,u).

In practice, without further assumptions on the drivers’ in-
tent, at any given time the supervisor can only know a desired
input vector (e.g., the instantaneous reading of brake and ac-
celeration for all drivers). Therefore, we assume in the sequel
that udes is a constant signal, with value equal to the vector of
the last measured desired input. This amounts, in practice, to
optimize the control signal towards the best admissible reading
of the driver’s input during each control time interval. The above
supervisor can be implemented as a discrete-time algorithm, by

fixing a small positive time stepping τ and computing the input
signal u allowed for the interval [t, t+ τ ] as the solution of the
following optimization problem:

min
u∈U

J(udes,u)

subject to x(τ,u,x0) ∈ MCIS.
(1)

Note that the constraint of the above problem is evaluated as
the solution of the Verification Problem, and can therefore be
addressed using the techniques discussed in [18], [23]. The stan-
dard, non-optimal implementation of the Supervisor Problem
proposed in [18], [20]–[23] is equivalent to solving (1) with cost
function

J(udes,u) :=

{
0 if udes = u,

1 if udes �= u.
(2)

This corresponds to returning udes whenever this maintains the
state within the MCIS, and returning an arbitrary input u such
that x(τ,u,x0) ∈ MCIS otherwise: existing results do not
optimize the input when u �= udes. In order to address this
problem, we propose a way to select an optimal value for u
when u �= udes, by taking as cost function the infinity norm
of the deviation between the supervisor output and the desired
input:

J(udes,u) := ‖u− udes‖∞. (3)

In the sequel, we provide a numerical strategy to optimize
the above function using existing results on the Verification
Problem. We then see that the input which minimizes (3) is in
general not unique and, by formulating a multi-objective analog
of the Supervisor Problem, we show that the set of optimal
solutions has a preorder, which allows to select a optimal
solution.

IV. SINGLE OBJECTIVE CONTROL DESIGN

The solution to problem (1) given the cost function (3) is
trivial if x(τ,udes,x0) ∈ MCIS. In this case, u = udes

satisfies all the problem’s constraints with J(udes,udes) =
0. In this section, we solve problem (1) in the case when
x(τ,udes,x0) /∈ MCIS.

A. Problem Reformulation

We can rewrite problem (1) with cost function (3) as follows:
min

u∈U , ubound∈R+

ubound

subject to ‖u− udes‖∞ ≤ ubound

x(τ,u,x0) ∈ MCIS.

(4)

Here, ubound is an upper bound to (3), and minimizing it while
satisfying safety constraints yields an optimal solution to (1).
Let now MCIS(ubound) denote the set of all states x ∈ X
which satisfy the Verification Problem under the constraint

‖u(t)− udes(t)‖∞ ≤ ubound for t ∈ [0, τ ]. (5)

and consider the optimization problem
min

ubound∈R+

ubound

subject to x0 ∈ MCIS(ubound).
(6)

The following result holds.

Lemma 1. The optimal cost of (4) is equal to the optimal cost
of (6).

Proof. Let u
′∗
bound and u∗

bound represent the optimal costs of (4)
and (6), respectively. The following two arguments are true:

• u∗
bound ≥ u

′∗
bound : If x0 ∈ MCIS(u∗

bound), then there
exists ū such that ‖ū−udes‖∞ ≤ u∗

bound for all t ∈ [0, τ ]
and x(τ, ū,x0) ∈ MCIS. Take now u = ū for t ∈ [0, τ ]
and u = udes for t > τ . This gives ‖u − udes‖∞ ≤



u∗
bound and x(τ,u,x0) ∈ MCIS. Thus, (ū, u∗

bound) is a
feasible solution for (4).

• u
′∗
bound ≥ u∗

bound : If x(τ,u,x0) ∈ MCIS and ‖u −
udes‖∞ ≤ u

′∗
bound, then x0 ∈ MCIS(u

′∗
bound). Therefore,

u
′∗
bound is a feasible solution for (6).

Because of the previous two statements, u∗bound = u
′∗
bound.

The advantage or rewriting (4) as (6) is that the search space
of the latter is the non-negative real line, rather than a functional
space. The optimal solution u∗bound to (6) can be numerically
computed using a bisection method (see Algorithm 1), and a
full optimal solution of (4) can be retrieved by selecting an
input u satisfying the constraints of (4) for ubound = u∗

bound
(ways to construct such an input are explained, e.g., in [18]).
Algorithm 1 inherits the complexity of the verification step
x0 ∈ MCIS(ubound), since the bisection cycle is O(1). There-
fore, the complexity of optimally solving (1) is comparable to
that of solving the Verification Problem, and any approximate
polynomial-time solution of the Verification Problem directly
improves the solution of (1).

Algorithm 1 Numerical solution of (6)
1: Initialise U = maxi(ui,max − ui,min), L = 0
2: while U − L > threshold do
3: ubound = (U + L)/2
4: if x0 ∈ MCIS(ubound) then
5: U = ubound
6: else
7: L = ubound

V. MULTI OBJECTIVE CONTROL DESIGN

The optimal cost u∗bound of (4) is the smallest value of the
cost function (3) for which all agents can avoid collisions. There
can clearly be multiple optimal solutions u with the same cost
u∗
bound and, in particular, for some of these solution the cost

Ji(udes,i, ui) (defined as (3) restricted to agent i) for some
agent may be smaller than for other solutions. In other words,
there is a set of optimal solutions, and the single-agent cost
functions Ji(udes,i, ui) induce a preorder on this set. This solu-
tion structure is more appropriately analysed in terms of Pareto
optimality in a multi-objective problem. Let us rewrite Problem
(1) as the following multi-objective optimization problem:

min
ui∈Ui

Ji(udes,i, ui), ∀ i

subject to x(τ,u,x0) ∈ MCIS,
(7)

Definition 1. An admissible solution u of (7) is called weak
Pareto optimal if there exists no admissible solution u′ such that
Ji(udes,i, u

′
i) < Ji(udes,i, ui) for all i; among the weak Pareto

optimal solutions, u is called Pareto optimal if there exists no
admissible solution u′ �= u such that: (i) Ji(udes,i, u

′
i) ≤

Ji(udes,i, ui) for all i and (ii) Ji(udes,i, u
′
i) < Ji(udes,i, ui)

for at least one i (see Fig.2).

J1(udes,1, u1)

J2(udes,2, u2)

Pareto solution

weak Pareto solution

non Pareto solution

Fig. 2. Illustration of Pareto and weak-Pareto solutions, accordingly to
Def.1.

Pareto optimal solutions are by definition not comparable in
the preorder induced by (7). Therefore, in the absence of further
hypotheses, all Pareto optimal solutions are equally good. The
following result holds.

Lemma 2. All solutions of (1) are weak Pareto Optimal for (7).

Proof. The proof is by contradiction. Assume that there is an
optimal solution u of (1) that is not Pareto optimal for (7). This
means that exists a solution u′ of (7) such that Ji(udes,i, u

′
i) <

Ji(udes,i, ui) for all i. Then J(udes,u
′) < J(udes,u) in (1),

contradicting the optimality of u.

By the above lemma, any solution of (1) is at least weak
Pareto optimal. It is however interesting to select, among opti-
mal solutions, one which is Pareto optimal, see Fig.2. In the rest
of this section we discuss a way to identify one such solution.
Our approach exploits a representation of the constraint of (7) in
terms of a scheduling problem, following the idea introduced in
[18]. We briefly introduce the scheduling equivalence in Section
V-A, then we discuss the optimization algorithm.

A. Verification problem vs. Scheduling problem
Define for each agent i such that yi(0) ≤ ai the quantities

Ri := infui∈Ui{t : yi(t, ui) = ai}, Di := supui∈Ui
{t :

yi(t, ui) = ai}, and set Ri = Di = 0 if yi(0) > ai. These two
quantities are, respectively, the minimum and maximum time
at which the output of system i can reach ai. Notice that Ri

is always finite, since by assumption limt→∞ yi(t, ui,max) =
ẏi,max, while Di can in general be infinite if ui,min can
bring agent i to a stop before ai. For each agent i such that
yi(0) ≤ ai, given a real number Ti, define Pi(Ti) :=
infui∈Ui{t : yi(t, ui) = bi}, with constraint yi(t, ui) ≤
ai ∀ t < Ti.

If the constraint cannot be satisfied, set Pi(Ti) := ∞. If
yi(0) ∈ (ai, bi) define Pi(Ti) := inf{t : yi(t, ui,max) = bi},
and if yi(0) ≥ bi define Pi(Ti) := 0. Pi(Ti) is the earliest time
that i can reach bi, if it does not pass ai before Ti. A scheduling
problem consists in assigning jobs to a resource satisfying
given requirements. Using the above quantities, we can write
the Verification Problem as a scheduling problem where the
intersection represents the resource, the agents represent the job
to be assigned to the resource, and the time spent by each agent
in the intersection is the length of the job to be executed. The
following result holds.

Theorem 1. Given an initial condition x0, x0 ∈ MCIS if and
only if there exists a schedule T = (T1, . . . , Tn) ∈ R

n
+ such

that for all i: Ri ≤ Ti ≤ Di, (8)
and for all (i, j), if xi(0) < bi, then

Ti ≥ Tj ⇒ Ti ≥ Pj(T). (9)
The reader can refer to [18] for the proof in the case where ẏ

is bounded above 0. An extension of the proof to ẏ ∈ [0, ẏmax]
is simple. Notice that, in the above definitions, the quantities
Ri, Di and Pi are all dependent on the set Ui. In the presence
of constraint (5), then, these quantities become a function of
the constraining quantity ubound. The following definition is
introduced.

Definition 2 (Scheduling Problems). Letting SP denote a
scheduling problem defined by (8) and (9), we write

• SP(ubound) when the scheduling quantities are computed
under the constraint (5).

• SP(u1,bound, . . . , un,bound) when the constraint (5) is dif-
ferent for different agents.



• T ∈ SP(ubound) if T is a feasible schedule of
SP(ubound).

• SP(L, ubound) when a restriction of SP(ubound) to a subset
L of the agents {1, . . . , n} is considered.

In this notation and by Theorem 1, the constraint of problem
(6) can be written as ∃T : T ∈ SP(ubound). We can now prove
a simple property regarding the dependence of SP on ubound:

Lemma 3. Consider the quantities Ri, Di and Pi(Ti) of
SP(ubound), and R′

i, D′
i and P ′

i (Ti) of SP(u′
bound) with

u′
bound < ubound. We have that Ri ≤ R′

i, Pi(Ti) ≤ P ′
i (Ti),

Di ≥ D′
i.

Proof. The property follows from the fact that SP(ubound) is a
relaxation of SP(u′

bound).

In what follows, we also consider an extension of the schedul-
ing problem defined by (8) and (9) where jobs cannot be
executed during specified time intervals, which are known as
inserted idle times (iit) [21]. Given a set of inserted idle times
IIT:= {[α1, β1], [α2, β2], . . .}, this amounts to adding to the
above the additional constraint

(Ti, Pi(Ti)) ∩ (αj , βj) = ∅, ∀ i, j. (10)

This problem will be denoted SP(ubound, IIT).

B. Multi-objective optimization algorithm

In this section, we discuss an algorithmic solution to (7)
which identifies a Pareto optimal solution. The following def-
initions are used to discuss the algorithm.

Definition 3 (Tight set). Consider a schedule T ∈
SP(ubound, IIT). We say that an ordered set of jobs and in-
serted idle times i = {1, . . . ,m} is tight if the following
conditions are satisfied: (i) all jobs and iit’s except the first
start exactly after the previous job or iit is done, i.e., Ti =
Pi−1(Ti−1), or Ti = βi−1, or αi = Pi−1(Ti−1), or αi =
βi−1; (ii) if the first element is a job it starts exactly at its release
time, i.e., at R1; (iii) if the last element is a job, it starts exactly
at its deadline Dm.

In other words, a tight set is a set of jobs and iit’s whose
scheduled starting time cannot be changed without changing the
order in which they are executed. Note that a single job with
equal release time and deadline is a minimal example of a tight
set, and that an iit is by definition always a minimal tight set.
Given a tight set for a schedule T ∈ SP(ubound, IIT), we can
identify a subset of jobs which do not satisfy constraints (8),
(9), or (10) if ubound is reduced, unless we change the order
with which they are scheduled in T. We call these jobs con-
strained, and formally define them as follows, explicitating with
Pi(ubound) and Di(ubound) the dependence of the scheduling
quantities of problem SP(ubound) on ubound.

Definition 4 (Constrained and constraining jobs). A tight job i
is constrained in a schedule T for a problem SP(ubound,IIT) if
i) it is followed by another tight job j and Pi(Ti, u

′
bound) > Tj

for any u′
bound < ubound, or ii) it is followed by an IIT [α, β]

and Pi(Ti, u
′
bound) > α for any u′

bound < ubound, or iii) Ti >
Di(u

′
bound) for any u′

bound < ubound.
A tight job is constraining if it is not constrained and it is

preceded by a constrained job in the same set of tight jobs, see
Fig. 3.

We can think of the constraining jobs for a schedule T ∈
SP(ubound, IIT) as those jobs which limit the minimum value
that ubound can take while allowing T to be adapted to be
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Fig. 3. Illustration of two feasible schedules for SP(u∗bound, IIT). Jobs
1 and 2 are constrained in both, while job 5 is constraining in T and not
tight in T ′. Schedule T ′ is then the constraint-minimal between the two.

feasible in SP(ubound, IIT) without changing the relative order
of jobs and iit’s.

Definition 5 (Constraint-minimal schedule). Consider a sched-
ule T ∈ SP. The schedule is constraint-minimal if no other
schedule T′ �= T, T′ ∈ SP has a set of constrained jobs that is
a strict subset of that of T . See Fig. 3.

Using the above definitions we can prove a useful result,
based on the following construction.

• Consider a schedule T ∈ SP(u∗bound, IIT), where
u∗
bound is the optimal cost of (4) with constraint ∃ T :

T ∈ SP(ubound, IIT), and assume that T is constraint-
minimal.

• Define a set C of constrained jobs and L of jobs that are
not constrained in T for SP(u∗bound, IIT), and define a
new set IIT′ := IIT ∪ {[Ti, Pi(Ti)]∀i ∈ C}.

• Call u′∗
bound the optimal cost of (6) with constraint ∃ T′ :

T′ ∈ SP(L, ubound, IIT
′).

• Finally, consider the scheduling problem
SP(u′′∗

bound,1, . . . , u
′′∗
bound,n, IIT), where u′′∗

bound,i :=
u∗
bound if i ∈ C, and u′′∗

bound,i := u′∗
bound if i ∈ L.

Lemma 4. The set of constrained jobs in T for
SP(u∗

bound, IIT) is a subset of the set of constrained
jobs in any T′′ ∈ SP(u′′∗

bound,1, . . . , u
′′∗
bound,n, IIT) for

SP(u′′∗
bound,1, . . . , u

′′∗
bound,n, IIT).

Proof. This is a consequence of selecting a constraint-minimal
schedule T. First of all, notice that (i) u′∗bound < u∗

bound,
by Lemma 3 and since u′∗

bound is computed by removing
from SP all constraining jobs, and that (ii) for any T′′ ∈
SP(u′′∗

bound,1, . . . , u
′′∗
bound,n, IIT), T′′ ∈ SP(u∗

bound, IIT).
The only way that a job which is constrained in T
for SP(u∗

bound, IIT) can be not constrained in T′′ for
SP(u′′∗

bound,1, . . . , u
′′∗
bound,n, IIT), is if its constraining job j is

scheduled at a different time in T′′ than in T. However, since T
is constraint-minimal, scheduling j at any different time would
generate a new constrained job k in T′′ for SP(u∗

bound, IIT).
We have defined u′′∗

bound,k = u′∗
bound < u∗

bound, therefore this
would imply T′′ /∈ SP(u′′∗

bound,1, . . . , u
′′∗
bound,n, IIT).

Algorithm 2 is based on the construction above. As we have
seen in Lemma 3, decreasing the value of ubound tightens the
constraints of SP(ubound). As a consequence, we can interpret
the optimal cost of (4) as the value u∗

bound for which a subset of
jobs verify the constraints exactly, i.e, would not be schedulable
for a smaller value of ubound . If we remove these job from the
optimization problem (but reserve their execution time as iit),



Algorithm 2 Multi-objective optimization algorithm
1: Initialise L = {1, . . . , n}, IIT= ∅, V ∗ = ∞
2: set k = 0
3: while L is nonempty or V ∗ > 0 do
4: k = k + 1
5: Optimization step: Solve problem (6) with constraint
6: ∃T : T ∈ SP(L, ubound, IIT ) and
7: call V ∗ its optimal cost
8: Selection step: Select a schedule T ∈ SP(L, V∗, IIT )
9: that is constraint-minimal

10: Reduction step:
11: for all jobs i ∈ L that are constrained
12: for Tk in SP(L, V ∗, IIT ) do
13: remove i from L
14: add the interval [Ti, Pi(Ti)] to IIT
15: set J∗

i := V ∗, T ∗
i := Ti

16: return (J∗
1 , . . . , J

∗
n), (T ∗

1 , . . . , T
∗
n )

we can solve (4) for the remaining jobs and find a lower optimal
cost. Iterating this reasoning we form a solution to the multi-
objective problem (7). Note that the complexity of Algorithm
2 is defined by the complexity of the optimization step, which
in turn is leaded by the complexity of the test at line 4 in
Algorithm 1.

Theorem 2. Algorithm 2 provides a Pareto optimal solution to
(7).

Proof. The algorithm is implementing the process described
before Lemma 4, and it returns a schedule T∗ and a solution
to (7) in terms of a set of optimal costs J∗

1 , . . . , J
∗
n. From

Lemma 4, we can conclude that all jobs for the schedule T∗ ∈
SP(J∗

1 , . . . , J
∗
n) are constrained, or have J∗

i = 0. In both
cases, it is not possible to find a feasible schedule for a problem
SP(J ′∗

1 , . . . , J ′∗
n ) with J ′∗

i < J∗
i for at least one i, therefore

J∗
1 , . . . , J

∗
n is a Pareto optimal solution.

VI. POSITIVE PREDICTIVE HORIZON

Though the proposed algorithm does not rely on a MPC-
based formulation, the bridges between the two approaches
are evident and worth of a discussion. Two aspects are shared
between them: (i) the notion of prediction horizon; (ii) the
concept of input/state constrained predictions.

As for MPC, the variable τ in (4) and (6) effectively acts as a
prediction horizon defining how far ahead conflicts are detected.
By verifying that x(τ,u,x0) ∈ MCIS, we are in fact imposing
a specification on u over the interval [0, τ ].

Keeping the time-stepping of a supervisor unchanged, we can
therefore improve its performance by increasing the value of τ
in the constraint of the optimal output computation. This may
lead to more driver-friendly, less aggressive manoeuvres. The
trade-off is on the restrictiveness of the supervisor, since for
large values of τ interventions may be triggered earlier than
strictly necessary1.

Another important comparison aspect is the consideration of
state and input constrained predictions. Note that while in a
MPC framework input, state and ultimately safety constraints
are explicitly formulated as inequalities or box conditions,
equivalent constraints are incorporated here into the definition
of the MCIS set, and implicitly enforced in the different formu-
lations through the condition x(τ,u,x0) ∈ MCIS.

1Note that, unlike for MPC, a larger value of τ will not increase the
computational complexity of the proposed protocol. Indeed, the complexity
of the Verification Problem is independent of τ (which only defines the
state’s projection horizon) and therefore the complexity of the optimization
problems remains unchanged.

VII. SIMULATION RESULTS

In order to show the efficiency of the proposed optimal
supervisory control, we considered in the sequel a three-vehicle
scenario as depicted in Fig. 1. Assume that the longitudi-
nal dynamics of all vehicles, travelling over three different
paths, are described by double integrator dynamics given by:
ẍi(t) = ui(t) and yi(t) = xi(t), where ẋi ∈ [0m/s, 17m/s]
and ui ∈ [−4m/s2, 2m/s2], ∀i. In all simulations the initial
conditions of the system are x = [(0, 11), (32, 12), (35, 10)],
and the supervisors run with a time stepping of 0.1s. To simplify
the interpretation of the results, we have assumed that the
drivers of all vehicles always request an input equal to 0.5
(horizontal dashed line in all figures), and that the intersection
corresponds to the interval [60, 75]m along all vehicles’ path
(grey boxes in all figures).

In Fig. 4(a), we show the behaviour of a scheduling-based
supervisor such as the one presented in [18], which does not
perform any optimization of the trajectory once the boundary
of the capture set is reached. At t = 1.1 seconds into the
simulation, the supervisor detects that vehicles are about to
leave the MCIS and intervenes to correct their trajectory. By
construction, the override input takes the extremal values ui =
+2 and ui = −4 until a first collision is averted at t = 3.1s,
and a second one is averted at t = 6.2s.

Fig. 4(b) considers the same scenario when the single-
objective optimal supervisor (6) is implemented with τ =
0.1s. By optimizing the intervened trajectories, the supervisor
provides a slightly better approximation of the drivers’ desired
inputs while avoiding two consecutive 2-vehicle conflicts from
t = 1.1s to t = 3.2s and from t = 5.4s to t = 6.5s. Note that
for both conflicts the only trajectories able to avoid collisions
are obtained with extremal inputs. It is worth mentioning that
this is always the case for trajectories sliding on the capture-set
of a two-vehicle problem.

Fig. 5(a) shows the resulting trajectories when a multi-
objective optimal supervisor (7) is implemented with τ = 0.1s.
As expected, the performance of the supervisor improves. More
precisely, the supervisor only overrides the blue and green
vehicles with respect to the first collision, allowing the red
vehicle to continue its desired trajectory. The overriding of the
red vehicle only occurs at t = 3.2s, i.e., two seconds later that
in previous examples; the performance of the green vehicle is
also improved (from t = 3.2s to t = 6s). Without needing
to override unnecessarily the green vehicle, the multi-objective
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Fig. 4. (a) Traditional supervisor based on (1) and cost (2) with τ = 0.1s;
(b) Single-objective optimal supervisor with τ = 0.1s.
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Fig. 5. Multi-objective optimal supervisor: (a)with τ = 0.1s; (b) with
τ = 1s; (c) with an EDD scheduling with τ = 1s

supervisor is, as expected, less restrictive/invasive. Globally,
one can easily observe that the approximation of the drivers’
desired input are significantly improved.

Fig. 5(b) shows the trajectories of a multi-objective optimal
supervisor, where τ = 1s. As expected, the supervisor overrides
the desired input about 1s earlier than in the other simulations,
but the resulting override is less aggressive, since the maximum
deceleration reached is ui = −2.5, instead of ui = −4 as in
previous cases.

Finally, Fig. 5(c) shows the trajectories of a six-vehicle
system when a multi-objective optimal supervisor using a Ear-
liest Due Date (EDD) scheduling algorithm. EDD consists in
choosing, among all possible job orders, a schedule where the
jobs with the earliest deadlines are executed first [27]. One can
easily observe that while actions are taken, in the early stage of
the simulation, to avoid a collision between the purple, blue and
cyan vehicles, the remaining vehicles keep their desired motion
profile until t = 5s. From this point onwards, due to the risk
of a collision between the green, yellow and red vehicles, the
supervisor takes control of the different vehicles until conflicts
have been solved. The maximum time to run the optimization
algorithm was 0.1s on a 2.8 GHz, 16 Gb RAM laptop running
on Windows 8.

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, we discussed the design of optimal, least
restrictive supervisors for intersection collision avoidance. We
leveraged results on scheduling theory to construct two al-
gorithms that compute the optimal corrections to the drivers’
input necessary to avoid a collision, one providing an optimal
solution, the other a Pareto optimal one. The complexity of
these algorithms is inherited from that of solving a Verification
Problem, which was discussed in [18], and can therefore take
advantage of efficient solutions to the Verification Problem. The
definition of the supervisor implicitly introduces a prediction-
time horizon. We exploited this to further improve our result,
allowing to change this horizon to tune the trade-off between
overall performance and restrictiveness.
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