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1 DEIB, Politecnico di Milano, Italy
Email: gabriel.rodriguesdecampos@polimi.it

2Department of Signals and Systems,
Chalmers University of Technology, Sweden.

Email: paolo.falcone,jonas.sjoberg@chalmers.se

Abstract: In this paper, we consider the coordination problem of multiple autonomous vehicles
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approach based on a pre-defined decision order. Using an optimal control formulation, we show
how coordination can be ensured by solving two local problems where collision avoidance is
enforced as time-dependent state constraints. We will analyse the feasibility of a given sequence
with respect to different decision criteria and present simulation results supporting our results.
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1. INTRODUCTION

The development of new Intelligent Transportation Sys-
tems (ITS) has enabled safer, smarter, and greener trans-
port systems [Behere et al. (2013)]. Recent research has
been focusing, among others, in prevention and mitigation
of accidents, reduction of greenhouse gas emissions and
efficiency in terms of energy and infrastructure utiliza-
tion. Such efforts are fuelled by alarming statistics on
road accident fatalities and the rapidly growing number
of vehicles on the road. According to the World Health
Organization, 1.24 million people died in traffic accidents
during 2013 and as many as 50 million people suffered
non fatal injuries, and this number can increase up to 1.9
million by 2020 if no action is taken [World Health Or-
ganisation (2013)]. Even if fatalities and injuries numbers
render safety more compelling than efficiency, the effects
of inefficient road transportation (e.g., traffic congestions,
pollutants, greenhouse gasses and fuel consumption) on
the environment, health and finance are also significant.
For instance, road transportation is currently responsi-
ble for 16.5 percent of the anthropogenic greenhouse gas
emissions [International Energy Association (2013)], and
congestion locks down most major cities during rush hours.
According to estimates by the U.S. Treasury, 7 billion liters
of gas is wasted through congestion in the U.S. alone,
which together with wasted time and productivity incurs a
cost of over 100 billion dollars annually [U.S. Department
of Treasury (2012)].

A particular interesting problem, both from a safety and
efficiency point of view, is collision avoidance at traffic
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intersections [Hafner et al. (2013); Doerzaph et al. (2008);
Alexander et al. (2011)]. In Europe, intersections-related
accidents are responsible for 21% of traffic related deaths
and 43% of the non-fatal injuries [Simon et al. (2009)].
Similar numbers have been reported from the U.S. [Na-
tional Traffic Highway Safety Association (2010)]. Due to
the high risk of accidents, these traffic scenarios are among
the most regulated ones, with vehicles guided simultane-
ously by traffic lights, signs, road-markings and right-of-
way rules. As a consequence, they often form bottlenecks
in the traffic system and even when not causing conges-
tion, existing coordination rules are inherently inefficient,
enforcing unnecessary decelerations and stops and thereby
wasting both fuel and time.

Cooperative ITS have the potential to improve traffic flow
and safety near intersections, without relying on inefficient
traffic lights or error-prone human control. Instead, vehi-
cles equipped with communication devices, have to coor-
dinate and agree on how to cross the intersection without
collisions. Informally, the coordination problem amounts
to deciding the control functions for the individual ve-
hicles that allow them to safely reach their destination.
It consequently entails avoiding both collisions and traffic
deadlocks, and doing so in a manner compatible with the
physical capabilities and constraints of the vehicles. Note
that the coordination problem has, in general, infinitely
many solutions corresponding to different control functions
and different crossing orders, i.e., temporal orders under
which the vehicles occupies the critical regions. In today’s
traffic system, the strategy resulting from the interplay
between human drivers, signal infrastructure and traffic
rules gives one of the many solutions. However, as noted
in the introduction, this particular strategy suffers from
inefficient performance, and can, due to the presence of
human drivers, unintentionally lead to constraint viola-
tions (collisions). Given a performance metric, we can also



set an optimal coordination problem, where the best of all
feasible solutions to the coordination problem is sought.

Cooperative conflict resolution problems for autonomous
vehicles at road intersections is a subject that has at-
tracted a lot of research efforts recently. For instance,
several works focused on the coordination problem based
on the multi-agent systems paradigm and a rule-based
approach [Dresner and Stone (2004, 2005, 2008); Kowshik
et al. (2011)]. Other works, instead, used Model Predictive
Control (MPC) coordination strategies [Kim and Kumar
(2014); Hult et al. (2015); Campos et al. (2013, 2014)].
For instance, [Hult et al. (2015)] exploits the structure
of the centralized, finite time optimal control problem, in
order to propose an approximate solution, while [Campos
et al. (2013)] considered a fully decentralized solution
to the intersection conflict resolution problem, based on
sub-optimal decision-making heuristics, using the concept
of decision sequence. This results were later extended
in [Campos et al. (2014)], where authors proposed a
low complexity receding horizon control framework. It is
worth mentioning that collision avoidance has also been
approached from an active safety point of view, where
the driver is overridden in case safety is compromised.
Among others, [Hafner et al. (2011, 2013)] exploited hy-
brid systems theory and [Ahn et al. (2014); Bruni et al.
(2013); Colombo and Del Vecchio (2015); Colombo and
Del Vecchio (2012)] a scheduling-based approach, where
the equivalence between the verification problem and the
feasibility of a scheduling problem is presented.

In this paper, we consider a fully decentralized solution
to the intersection conflict resolution problem, suitable for
fully autonomous vehicles (contrary to [Hafner et al. (2011,
2013)], which focus on intervention). We abstract from the
(many) implementation issues and focus on the fundamen-
tal aspects of the underlying decision making problems.
Our solution relies on a cooperatively pre-determined de-
cision order (enabling sequential decision making)for the
computation of optimal collision-free trajectories (contrary
to [Colombo and Del Vecchio (2012)], which focuses on
feasible crossings sequences and not optimality). This work
complements our previous results [Campos et al. (2013,
2014)], by considering general decision orders and pro-
viding a comparison in terms of feasibility for different
decision criteria.

The rest of this paper is organized as follows. Section
2 presents the problem formulation while Section 3 ad-
dresses the centralized control formulation. In Section 4, a
sequential and decentralized approach is presented, where
formal feasibility conditions are derived for a given decision
order. Finally, Section 5 presents some simulations results
supporting the theoretical contributions of this paper and
Section 6 some final conclusions.

2. SYSTEM DESCRIPTION

Consider N > 1 autonomous vehicles/agents approaching
a traffic intersection as shown in Figure 1. For each agent i,
we assume that:

• a path is given and is known;
• the assigned path is perfectly followed;
• the acceleration along the path can be varied;
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Fig. 1. Illustration of the considered scenario. Several au-
tonomous vehicles approach an intersection defined
by a range of positions over pre-defined paths. Vehi-
cles are supposed to approach the intersection with
a desired speed, where the variable of control is the
longitudinal acceleration.

• all vehicles have synchronized clocks and are located
before the intersection at the initial time instant.

Let xi = [pi vi]
T ∈ Xi = Pi × Vi denote the state

of each vehicle i ∈ N = {1, . . . , N}, where pi ∈ Pi,
vi ∈ Vi and Pi and Vi represent the sets of all admissible
(scalar) longitudinal positions and velocities along the
path, respectively. Each agent is modeled as a discrete time
double integrator

xi(t+ 1) = A xi(t) +B ui(t), (1)

where A = [1 1; 0 1] and B = [0 1]
T

. Furthermore, we
assume that a full measurement of the state xi(t) is
available at all times. Throughout the rest of the article,
t is considered to be the current time such that (·)(t+ k)
denotes the predicted value of variable (·) at time t + k,
computed at time t.

As a part of the assigned driving task, each agent i
has a given reference (i.e., desired) velocity denoted by
vdi ∈ Vi. Furthermore, let x = [xTi , . . . , x

T
N ]T , y =

[yTi , . . . , y
T
N ]T , u = [uTi , . . . , u

T
N ]T , vd = [vdi, . . . , vdN ]T de-

note the state, the input, the output, and the desired ve-
locity vector, respectively, for the entire system composed
of N vehicles. The following constraints are also taken into
account:

(1) Actuator limitations

To ensure that the control input ui (longitudinal
acceleration) is within the admissible actuator range,
each vehicle is assumed to be subject to:

umin
i ≤ ui(t) ≤ umax

i , ∀t ≥ 0, (2)

which yields Ui = { ui| ui ∈ [umin
i , umax

i ] }.

(2) State constraints

Vehicles’ velocities are constrained such that

0 < vmin
i ≤ vi(t) ≤ vmax

i , ∀t ≥ 0, (3)

which yields Vi = { vi| vi ∈ [vmin
i , vmax

i ] }.

(3) Safety constraints



The proposed collision avoidance solution relies on
the design local controllers preventing a given vehicle
of accessing the intersection if it is already occupied
by any other vehicle. We introduce the following
definitions.

Definition 1. (Critical set). For each agent i ∈ N ,
let Cri denote the critical set, i.e., the set of all
positions along the path where a collision is possible
and defined as

Cri , { xi ∈ Xi| pi ∈ [Li, Hi] } , (4)

where Li < Hi are bounds on the position along the
path of vehicle i defining the intersection. Note that
these parameters are dependent on the geometry of
the workspace and are time-invariant.

Definition 2. (Occupancy interval). For each agent
i ∈ N , the occupancy interval of the intersection for
a given predicted control sequence can be expressed
as

Γi,t (xi(t), ui(t), ui(t+ 1), . . .) = {k| xi(k) ∈ Cri},
(5)

where xi(t + 1) is given by (1) and {ui(t), ui(t +
1), . . .} denotes a control sequence. In order to sim-
plify the notation, we will consider throughout the
rest of the paper Γi,t as the shorthand form of
Γi,t (xi(t), ui(t), ui(t+ 1), . . .).

From Def. 2 the following collision avoidance con-
straint follows

Γi,t ∩ Γj,t = ∅,∀ i, j ∈ N , j 6= i. (6)

For the sake of clarity, if at time t the condition
pi(t) < Li holds, we will state that agent i is “before”
the critical set, while if pi(t) > Hi holds we will say
that the agent is “after” the critical set. Finally, we
introduce the polytopes Ωi and Υi as the set of states
corresponding to the vehicle being before and after
the intersection, respectively, and are defined as

Ωi = {xi| vmin
i ≤ vi ≤ vmax

i , 0 ≤ pi ≤ Li},
and Υi = X/{Cri ∪ Ωi}, see Figure 3.

3. CENTRALIZED PROBLEM FORMULATION

Consider the following global cost function

Jcentr,t =

∞∑
k=0

‖v(t+ k)− vd‖2Q + ‖u(t+ k)‖2R, (7)

where, R � 0 and Q � 0 are block diagonal weighting
matrices of appropriate dimensions penalizing the control
signal and the deviation of the agent’s speed from the
desired value, respectively. The formal centralized problem
for traffic coordination at traffic intersections is given by

min
[u(t),u(t+1),...]

Jcentr,t (8)

subject to: (1), (2) and (3), ∀ i ∈ N
(6), ∀ i, j ∈ N , j 6= i.

The solutions to (8) consists of the best possible strategies
with respect to (7), given the geometry of the coordination
scenario, the initial state configuration and the limitations
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Fig. 2. Schematic illustration of a two vehicle collision
accordingly to Definition 1 and (6). The red area
contains the infeasible (forbidden) state space combi-
nations and corresponds to collisions between vehicles
1 and 2.

and capabilities of each vehicle. However, the structure of
(8) raises serious computational complexity issues related
to the prediction horizon length and the number of in-
volved vehicles. Indeed, even a formulation of (8) over a
finite time horizon W , yet large, might be computationally
prohibitive. In order to tackle this issue, we propose in the
sequel a low complexity decentralized solution based on a
pre-defined decision order.

4. DECENTRALIZED PROBLEM FORMULATION

Due to the collision avoidance constraints (6), problem (8)
is computationally prohibitive and non-convex, see Fig-
ure (2). However, a low complexity approximate solution
of problem (8), based on the sequential solution of 2N −
1 convex problems, can be formulated by assuming the
existence of a decision order [Campos et al. (2013, 2014)].
In the context of this article, a decision order defines the
sequence in which the different agents will solve their
local optimization problems. The following definition is
introduced.

Definition 3. (Decision order). Let N = {1, . . . , N}
be the set of vehicles and O a permutation of N defined
according to a given criterium θi. Then O is considered
to be the decision order, where (O)m denotes the m-th
element in the order. Furthermore, O can be partitioned,
with respect to each vehicle i = (O)m, into Ob

i and Oa
i : the

first set contains the indices of all agents j 6= i appearing
before i in the decision order, while the second includes
the indices of the vehicles appearing after agent i.

Considering a decision order, a sequential approach is pro-
posed here. It is assumed that the first agent on the deci-
sion order will progress according to a local unconstrained
optimization problem, which will broadcast the expected
occupancy interval of the intersection. This will then be
used by the remain vehicles on the decision order to enforce
collision avoidance in their respective local optimization
problems (problems (14) and (15) presented later in this
paper).



4.1 Priority ordering

The main idea behind the proposed decentralized approach
relies on a pre-defined decision order establishing in which
sequence agents will solve their local optimization prob-
lems. How to define a meaningful decision order, however,
is still an open problem. Here, we consider commonly used
heuristics for priority assignment. We will also propose a
novel criteria able to incorporate the individual degree of
freedom of each vehicle.

(1) First In First out (FIFO): FIFO algorithms are
methods for organizing and manipulating a queue of
operations, widely spread in different technical fields.
They can also be applied to intersection crossing
where the vehicle arriving first to the intersection, or
“head” of the queue, is processed first. In the context
of this paper, vehicles getting to the intersection ear-
lier will then gain priority in the decision sequence O.

(2) Distance to intersection: Another intuitive, com-
monly used decision criteria is based on the distance
between each vehicle and the collision point. In the
context of this paper, such algorithm has the advan-
tage of handling eminent collisions first, while keeping
far-way agents at the end of queue. Nevertheless, such
approach is incapable of incorporating the effective
control freedom of each vehicle.

(3) Time to react: The concept behind this approach
relies on the set of state configurations that will lead
to an unavoidable collision. For example, it is possible
that an agent, once it detects a possible collision
with another agent, is unable to control its future
trajectory in such a way that it can influence the
time instants at which it will occupy the intersection.
Based on such an argument, we are interested in
determining if it exists a trajectory leading a vehicle
to the critical set in a finite number of steps, under
any feasible control input [Campos et al. (2013)]. The
following definition, taken from [Borrelli et al. (2014)],
will be used in the sequel to define the degree of
freedom of each vehicle.

Definition 4. (One-step robust controllable set).
Consider a system given by

x(t+ 1) = f(x(t), w(t)),

where x(t) ∈ X,w(t) ∈ W, and t ≥ 0. We denote the
one-step controllable set to the set T as

Pre(T ,W) , {x ∈ X : f(x, u) ∈ T ,∀w ∈ W}.
In a intersection scenario, it is clear that the

individual degree of freedom of a vehicle is defined
by its range of feasible control inputs. Exploiting
the notion of one-step robust controllable set, we
introduce here the concept of attraction set denoted
by Ai,∀i ∈ N . Using reachability analysis tools, the
set Ai is defined as:

Ai(Cri) = Pre(Cri, Ui) (9)

= {xi(t) ∈ Xi : xi(t+ 1) ∈ Cri,∀ ui ∈ Ui} .
In other words, the set Ai includes all possible state

configurations that will lead the agent, unavoidably,
to its critical set Cri in one step. The reader can
refer to [Borrelli et al. (2014)] for further details on
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Fig. 3. Illustration of the attraction sets Az
i and the critical

set Cri.

reachability/controllability analysis. In a general way,
define now:

Ai(T ) = Pre(T , Ui)

= {xi(t) ∈ Xi : xi(t+ 1) ∈ T ,∀ ui ∈ Ui} .
where T is usually referred to as the target set.
Denote Ai1 = Ai(Cri). By performing backward
sequential calculations, it is possible to compute the
super-set Az

i including all the attraction sets that will
drive vehicle i to Cri in at most z steps such that:

Az
i = [Ai1,Ai2, · · · ,Aiz], (10)

where Ain = Ai( Ai(n−1)). Note that the scalar z
is not a chosen parameter but it rather depends on
the structure of the problem. In other words, z is
the largest scalar before the backward reachability
calculations result in an empty set. For the sake
of clearness, an illustrative schema is presented in
Figure 3.

It follows from (4) and (10) that both Cri and Az
i

are time invariant, therefore offering precious infor-
mation regarding the individual degree of freedom of
each agent. We therefore propose to use such concepts
to establish cooperation among agents. In order to
introduce some logical fairness in the protocol and
to compensate the natural drawbacks of a sequential
decision procedure, in consider int this work a control
priority defined in a proportionally inverse way with
respect to the values of the “Time to react”, defined
as follows:

Definition 5. (Time to react ∆TR
i ). Consider the

state xi(t) at the current time instant t. The time
interval until the vehicle reaches any set n of Az

i (if
vehicle keeps its desired profile) is considered to be the
time to react ∆TR

i . By definition, it follows that the
agent’s will enter, unavoidably, into Cri in ∆TR

i + n
steps, n ∈ {1, . . . , z}.

In other words, priority will be given to the agent
lying closer to its attraction set, i.e., the agent with
the lowest ∆TR

i value, then to the agent with the
second smallest ∆TR

i and so on. Such policy is moti-
vated by the claim that the agent with the lower ∆TR

i
has, among all vehicles, the lowest individual degree
of freedom.



4.2 Formulation of two convex optimization problems

Consider that the intersection is already occupied by an
agent j during some time interval Γj,t. Thus, only two
options are therefore valid for any other agent: (i) crossing
the intersection before; (ii) crossing the intersection after.
Extending this line of thought, a decentralized scheme can
be set up where each agent in the decision order restricts
its choices to pass the intersection before or after all the
preceding vehicles in the decision order. Note that this
approach is no longer optimal, since not all crossing orders
are explored 1 . Note that the computational complexity of
the proposed algorithm is linear with the vehicles number
N , relying on the sequential computation of 2N − 1
quadratic programming problems. For the general case
of N vehicles (with N ! potential crossing orders), the
proposed approach reduces the number of possible crossing
orders to 2(N−1) and considers only one of them.

Keeping the same performance metrics as in (7), the local
objective associate to each agent i ∈ N is given by

Jd
i,t =

W∑
k=0

‖vi(t+ k)− vdi‖2Qi
+ ‖ui(t+ k)‖2Ri

, (11)

where W is a very large prediction horizon and Ri � 0 and
Qi � 0 are weighting matrices of appropriate dimensions.
We can informally define the following two problems:

• Problem A (Informal Statement): Find the optimal
control policy such that agent i enters the intersection
only after all preceding agent(s) j ∈ Ob

i have exited.

• Problem B (Informal Statement): Find the optimal
control policy such that agent i exits the intersection
before any preceding agent(s) j ∈ Ob

i enters.

For agent i, let Ψi,t =
⋃

j∈Ob
i

Γj,t be the union of the

occupancy intervals of all preceding vehicles inO. Collision
avoidance is then ensured if

(1) For Problem A, the earliest entry time for agent i is
given by

tai,t = max
m∈Ψi,t

{m}+ δai . (12)

(2) For Problem B, the latest exit time for agent i is given
by

tbi,t = min
m∈Ψi,t

{m} − δbi . (13)

Here δbi , δai ∈ Z+ are safety time gaps between two
occupancy intervals. We are now ready to formulate Prob-
lems A and B as two convex optimization problems where
collision avoidance is enforced by state constraints. Thus,
we have

Problem A:

min
[ui(t),ui(t+1),...]

Jd
i,t (14)

subject to: (1), (2) and (3),

pi(t
a
i,t) ∈ Ωi.

1 As an example, take the three vehicle case, with a decision
sequence O = {1, 2, 3} . Considering the proposed algorithm, only
four possible crossing orders {1,2,3}, {3,1,2}, {2,1,3} and {3,2,1} are
considered, whereas sequences {1,3,2} and {2,3,1} are discarded.

Problem B:

min
[ui(t),ui(t+1),...]

Jd
i,t (15)

subject to: (1), (2) and (3),

pi(t
b
i,t) ∈ Υi.

Assuming that both Problem A and B have a solution,
each vehicle will then choose the solution associated with
the lowest Jd

i,t.

4.3 Feasibility analysis

From problems (14) and (15), one can easily conclude
that the proposed conflict resolution algorithm relies on
two optimization problems over two different horizons: one
guaranteeing that a vehicle i can reach Υi in (tbi,t−t) steps
(i.e., accelerating and crossing first); the other ensuring
that the agent can remain within Ωi in (tai,t − t) steps
(i.e., slow down and take the last position). The following
definition is taken from [Borrelli et al. (2014)] and is used
in the sequel to derive feasibility conditions of a given
decision order.

Definition 6. (One-step and R-step controllable sets).
Consider a system subject to external inputs given by

x(t+ 1) = f(x(t), u(t)),

where x(t) ∈ X,u(t) ∈ U, and t ≥ 0. We denote the one-
step controllable set to the set T as

Pre(T ) , {x ∈ X : ∃u ∈ U s.t. f(x, u) ∈ T }.
Furthermore, the R-step controllable set KR(T ) to the set
T is defined recursively as

Km(T ) , Pre(Km−1(T )) ∩X, K0(T ) = T ,
where m ∈ {1, . . . , R}.

For a given decision order, the following conditions
hold [Campos et al. (2014)].

Proposition 1. (Local feasibility). Let the state of an
agent i ∈ N , driven by dynamics (1), be xi(t) ∈ Xi

at time t. Given a decision sequence O, agent i has a
feasible solution if and only if at least one of the following
conditions is satisfied

xi(t) ∈ K
(tai,t−t)
i (Ωi), (16a)

xi(t) ∈ K
(tbi,t−t)
i (Υi), (16b)

It follows from Def. 6 that if condition (16a) is satisfied,
then ∃ui ∈ Ui such that vehicle i can remain within Ωi

in (tai,t − t) steps. On the other hand, if condition (16b)
is satisfied, then there exists a feasible control input that
can drive the system to the target set Υi in (tbi,t− t) steps.
Thus, if one of these is satisfied, there exists at least one
feasible control sequence satisfying the safety constraints.

Proposition 2. (Global feasibility). Consider a set of
N systems driven by dynamics (1) such that x(t) ∈ X.
At time t, a decision order O is feasible if and only if
Proposition 1 is satisfied for each element in O, except the
first one.

Proposition 1 and Proposition 2 present local and global
feasibility conditions for a given decision order O, respec-
tively. More precisely, they allow us to verify feasibility



of an order by performing set-membership tests according
to Proposition 1 and 2. From an implementation point
of view, this can help to reduce the computational load
considering that the derivation of the backward reachable
sets can be locally pre-computed.

Remark 1. Note that the concept of decision sequence
has been extended in [Campos et al. (2014)] to a receding
horizon control (RHC) framework. For any given decision
sequence, it was shown that highly complex coordination
scenarios can be simplified into simple and scalable RHC
problems. More precisely, the local problems are divided
into a finite-time optimal control problem, where collision
avoidance is enforced as terminal constraints, and an
infinite horizon control problem that is solved offline.

5. SIMULATION RESULTS AND DISCUSSION

Consider a system of three vehicles (N = 3) as represented
in Figure 1. Here, the safety parameter δ has been chosen
as δ = [ δb δa ]T = [1 1]T and Li = 100 and Hi =
130, ∀i ∈ N . Furthermore, vehicles are heterogeneous
with respect to the control constraints such that Ui 6=
Uj , ∀i, j ∈ N . For each agent, the initial state is given by
xi(0) = [pi(0) vdi]

T such that x1(0) = [7 8.2]T , x2(0) =
[4 5.95]T , x3(0) = [70 3.3]T . This yields Γ1,t = {10 −
15},Γ2,t = {17− 21} and Γ3,t = {10− 18}. If no collision
avoidance procedures are implemented, i.e., if all agents
respect their pre-defined trajectory, then a collision can
occur from t = 10 until t = 21.

In the sequel, we will discuss the advantages of the pro-
posed sequential approach. As previously mentioned, there
are several heuristics that can be used to define a decision
order, as considered in the context of this paper. However,
not all criteria θi offer the same performance and feasibility
properties. In this work we are interested in the local
and global feasibility of the decision order accordingly to
Propositions 1 and 2. Note that the order O is assumed
to be defined from the lowest to the highest value of
θi,∀i ∈ N . Our goal is to show the advantages, in terms of
feasibility, of a decision order based on time to react of the
different vehicles, as proposed in this work. For comparison
purposes, we consider other common decision criteria θi
based on: (i) First In First Out (FIFO) protocols; (ii)
distance to intersection.

For the different criteria, the resulting orders and feasibil-
ity arguments are presented in Table 1. Recall the intuition
behind the concepts “time to react” and the attraction
sets. Able to incorporate the individual degree of freedom
of each vehicle, we claim here that such an approach
leads to a deeper and comprehensive understanding of the
current traffic situation, allowing therefore the derivation,
from a fairness and feasibility point of view, of better
priority relations/orders. The analysis of Table 1 supports
our claims in terms of feasibility. Indeed, if a decision order
is based on the “time to react”, this leads to a feasible
solution allowing agents to cross safely the intersection.
On the other hand, however, the remaining criteria do
not guarantee global feasibility, since both problems (14)
and (15) are unfeasible for vehicle 1. This is shown in
Figure 4, where the results of set-membership conditions
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Fig. 4. Feasibility regions for vehicle 1: (a) for an order O
= {3, 1, 2} defined with respect to a FIFO algorithm;
(b) for an order O = {3, 2, 1} defined with respect
to approaching speed ‖pi(0) − Li‖. In both figures,
the current state (red dot) does not belong to any of
the presented sets, therefore compromising the global
feasibility of the corresponding order.
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Fig. 5. Evolution of the agents’ trajectories according
to proposed sequential algorithm. The intersection is
represented by the horizontal red lines and the black
and grey dashed lines represent the entrance and exit
time instants, respectively.

(accordingly to Proposition 1 and 2) are presented. In
both figures one can see that the current configuration of
vehicle 1 does not belong to any of the sets (derived using
reachability theory). Accordingly to these results, vehicle
1 is: (i) unable to cross before vehicle 3 (in Fig. 4(a) and
(b), x(t) /∈ K9

1 ); (ii) unable to cross after vehicle 3 (in
Fig. 4(a), x(t) /∈ K19

1 ); (iii) unable to cross the intersection
after vehicle 3 and 2 (in Fig. 4(b), x(t) /∈ K25

1 ).

Finally, Figure 5 presents the trajectories of the different
vehicles according to the proposed control protocol for a
decision order O = {1, 3, 2}. Here, the critical set Cri is
represented by the horizontal red lines and the black and
grey dashed lines represent the entrance and exit times,



θi “time to react” ‖pi(t)− Li‖ FIFO

Order O {1, 3, 2} {3, 2, 1} {3, 1, 2}
Feasibility Feasible Unfeasible Unfeasible

Table 1. Decision orders O and feasibility con-
clusions with respect to different θi.

defining Γi,t,∀i ∈ N . One can observe that a collision
is avoided, since the different Γi,t never intersect. We
recall that in the proposed approach time-dependent state
constraints are enforcing collision avoidance conditions,
see (14) and (15). According to the proposed algorithm,
agent 1 (with highest priority) keeps its desired trajectory,
crossing the intersection during 12 < t < 15. Based on
this information, agent 3 solves problems (14) and (15),
choosing the best local solution. The same procedure is
later performed by agent 2.

6. CONCLUSIONS

In this paper, we presented a cooperative conflict reso-
lution approach for traffic intersections, based on a se-
quential approach. The proposed solution offers several
advantages such as low complexity and scalability. In fact,
its per agent complexity with respect to the number of
agents remains constant since collision avoidance is en-
forced through local state constraints at given time steps.
Furthermore, due to its low computational requirements,
the proposed structure can also be cast into a RCH
framework. Finally, this novel control formulation has also
the merit of allowing the derivation of (easily verifiable)
feasibility conditions for a given sequence. Throughout
simulation results, we showed that a decision order based
on the time to react, as proposed in this paper, guarantees
global feasibility of the order whenever other decision cri-
teria do not. To complement these results, future research
should focus on the optimality analysis and experimental
implementation of such approaches.
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