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This article proposes a distributed algorithm for the compact deployment of robots, using both distance-
and angular-based arguments in the controllers’ design. Our objective is to achieve a configuration max-
imizing the coverage of the environment while increasing the graph’s connectivity. First, we provide:
(i) a dispersion protocol guaranteeing connectivity maintenance; and (ii) a compactness controller with
static and variable control gains that minimizes the inter-agent angles. Second, we present a sequential,
multi-stage strategy and analyse its stability. Finally, we validate our theoretical results with simulations,
where a group of robots are deployed to carry out sensing or communication tasks.

Keywords: multi-agent systems (MAS); dispersion; compact formations; formation shape control.

1. Introduction

Increasing algorithmic sophistication and computational capabilities of intelligent, autonomous agents
have enabled their application to complex tasks in different domains. The range of applications of
multi-robot systems includes search and rescue missions, intelligent transportation systems, wire-
less surveillance networks, disaster relief operations, assisted living or military/police action support
Manathara et al. (2011). In each of these applications, inclusion of intelligent, autonomous agents and
decision support systems can save costs, increase efficiency, and leave humans to deal with higher-level
tasks. However, this requires harmonious and effective cooperation between the robots themselves and,
in certain cases, between robots and humans. An illustrative example of a search and rescue operation
is presented in Fig. 1, where mobile robots/vehicles need to efficiently sweep an unknown environment
while supporting the activities of a human operator.

The complexity of certain missions often requires vehicles to deploy over a region, assume a specified
pattern, make a co-operative decision or move in a synchronized manner. Moreover, as the complexity of

© The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



J_ID: imamci Cust. A_ID: 00000.00 Cadmus Art: IMAMCI00000 CVO ID: OP-IMCI160067 — 2017/1/20 — page 2 — #2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 G. RODRIGUES DE CAMPOS ET AL.

Fig. 1. An illustrative example of a search-and-rescue scenario, where a team of humans and autonomous agents needs to
accomplish a task. For the sake of the success of the mission, the autonomous agents need to efficiently sweep an unknown,
aggressive environment while keeping communication links among themselves and the human players. For such scenarios,
increased connectivity properties are crucial from an efficiency, safety and redundancy point of view.

missions increases, robots may also be required to evolve in aggressive and time-varying environments.
This requires control policies that guarantee increased dynamic reconfiguration capabilities, in order to
ensure quality of service (QoS) and performance subject to communication and sensing constraints. All
these challenges led the way to extensive studies on multi-agent systems (MAS) and their properties,
spanning several scientific communities and focusing on a wide range of control, communication, sensing
or computational problems. For instance, a large literature exists on situational awareness Kruijff et al.
(2014), adversarial interactions and complexity management Shamma (2007) and motion coordination
strategies Martínez et al. (2007) such as flocking protocols (Olfati-Saber, 2006; Yao-Li et al., 2007),
consensus and rendezvous algorithms (Cortés et al., 2006; Dimarogonas et al., 2007; Seo et al., 2011;
Shen et al., 2012; Rodrigues de Campos et al. , 2010, 2011, 2012) or formation control (Egerstedt et al.,
2001; Dong , 2011; Wen et al., 2013; Sun et al., 2015).

1.1. Related research

In the sequel, we provide a selection of results related to scope of this article. This section is articulated
around two research topics: agent’s deployment and formation shape control.

1.1.1. Deployment, coverage and dispersion: In the literature, a particular attention has been given to
the coverage problem, firstly defined in Gage (1992). From this initial work, different solutions have been
proposed, for instance, to the visibility problem, i.e. where the part of the terrain that is monitored (visible)
by the robot team has to be maximized (Mei et al., 2006; Hexsel et al., 2011). Among others, Batalin
et al. (2002, 2007) used local dispersive interaction between robots to achieve good global coverage and
Howard et al. (2002) considered an incremental algorithm which incorporates the maximum monitoring
distance. On the other hand, the intervention problem, i.e. where the robot has to be as close as possible
form every point in the terrain, is also adapted to several practical applications. This problem was firstly
studied in Cortés et al. (2004), and a great number of solutions have been proposed since then for a
variety of different scenarios (Poduri et al., 2004; Schwager et al., 2009).
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 3

Some other works exploited the concept of cohesiveness, which can be characterized by a repul-
sion/ attraction function that maintains desired relative distances between an agent and its neighbors
(Olfati-Saber, 2006; Mastellone et al., 2008). A continuous-time model for swarm aggregation is pre-
sented in Gazi et al. (2003), where it is proved that a group of agents form a cohesive swarm if each pair is
subject to a potential function. In contradiction, other results focused on the inverse agreement problem
or, in other words, in swarm dispersion Dimarogonas et al. (2009). Here, each agent follows a potential
field leading the swarm to a configuration where the minimum distance between the swarm members
is identical. The same idea of artificial potential functions was also used for studying behavior-based
control as in, e.g. Reif et al. (1999); Donald et al. (2000); Cao et al. (2003), as well as air traffic and
road traffic control (Fankhauser et al., 2011; Makarem et al., 2012).

Finally, other works focused on the connectivity maintenance problem (Ji et al., 2007; Zavlanos
et al., 2008; Schuresko et al., 2009; Dimarogonas et al., 2010), where (often distributed) co-ordination
algorithms allow robots to adapt their motion profiles so to preserve connectivity. More recently, Bezzo
et al. (2010, 2011a,b) tackled the deployment of mobile routers in accident areas problem, using an
appropriated routing and position optimization algorithm.

1.1.2. Formation shape control A fundamental task for robot reconfiguration is formation shape
control. The reader can refer to Oh et al. (2015) for a recent survey on multi-agent formation control.

By definition, the formation shape control problem involves a group of agents tasked with forming
and maintaining a given geometric shape, described in terms of relative geometrical constraints. Among
many others, Bishop et al. (2015); Mou et al. (2015) have recently proposed distributed control strategies
guaranteeing the convergence to a prescribed formation shape, while Martínez et al. (2006) proposed
different approaches to deal with location and trajectory following of a moving target. Formation control
based on virtual structure methods was also introduced in Beard et al. (2001); Consolinia et al. (2008);
Chen et al. (2010) and strategies especially tailored to submarine/oceanic applications were studied in,
e.g. Ghabcheloo et al. (2005); Sepulchre et al. (2008); Brinon-Arranz, et al. (2014), with an emphasis on
circular formations. Recently, Eren (2012) also exploited rigid graph theory for bearing-based formation
control.

Closer to the topic of this article, some other works focused on the formation shape control of
triangular formations. In Cao et al. (2007), a “positively-oriented” triangular formation is maintained
by having each agent locally controlling its own position so that the distance to the next agent in the
triangle is constant. This approach was later extended in Cao et al. (2011b) to a multi-level procedure,
where each agent cyclically switches between periods of localization, position control and standby. A
distance based approach was also considered in Summers et al. (2009); Anderson et al. (2010), where
authors analyse equilibrium formation shapes with incorrect interagent distances. In a different way,
(Basiri et al., 2010; Bishop, 2011a; Bishop et al., 2011b, 2010) consider an angle-based (rather than
inter-distance based) perspective. Here, each agent measures the bearing to the other two agents in a
local co-ordinate system, and control its motion according to prescribed geometric constraints.

1.2. Problem formulation and contribution statement

In this article, we focus on the problem of the compact deployment of vehicles, so to improving the
communication linkage among the swarm members. This work is motivated by applications requiring
the deployment of a group of robots to carry out sensing (i.e. mobile sensors) and communication (i.e.
mobile routers) tasks, as illustrated in Fig. 1. Such scenarios have also been recently considered in, e.g.
the DARPA LANdroids program. We pay a particular attention to the graph’s connectivity, which is an
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4 G. RODRIGUES DE CAMPOS ET AL.

useful or even necessary property for multi-robot systems. For instance, higher connectivity offers great
advantages if one aims to perform agreement procedures over a set of robots/sensors, as the connectivity
of a graph greatly influences the speed of convergence of such protocols. Also, other applications may
ask for redundancy on measurements, especially when critical decisions are dependent on it.

Our goal is to achieve a (static) configuration maximizing the coverage of the environment while
achieving and maintaining high connectivity. The three problems tackled are defined as follows:

• Deployment/coverage/dispersion:
– PROBLEM 1- Dispersion: Given a set of N agents operating in the workspace W ⊂ R

2, find
local control policies such that each agent is separated by a given, fixed distance from all its
neighbours.

– PROBLEM 2- Connectivity maintenance: Given a set of N agents operating in the workspace
W ⊂ R

2, find local control policies such that initially existing communication links do not
vanish/break as time evolves.

• Formation shape control:
– PROBLEM 3- Compactness: Given a set of N agents operating in the workspace

W ⊂ R
2, find local control policies minimizing the inter-agent angles, so to increase the number

of communication links.

The major algorithmic contribution of this article is the development of a distributed law for angular-
constrained formation control of a multi-agent system under sensing/communication constraints. Unlike
common solutions, which use either distance-based or angle-based constraints, we propose here a novel
perspective coupling these two approaches in the design of the controllers.

The features of the suggested solution are given as follows. To solve Problems 1 and 2, a potential
field based approach is proposed, which is inspired from the results of Dimarogonas et al. (2009).
More precisely, each agent is equipped with potential functions that will, simultaneously, isolate it
from any other agent and impose connectivity maintenance using only information of those located
within its sensing zone. Regarding Problem 3, we base our approach on the inter-agent angles formed
within the formation, that should be minimized in order to achieve compact configurations. See Fig. 2
for an illustration. As considered in this article, the desired of compactness notion stems from the
optimal connectivity properties of a three-agent network. Generally speaking, it follows that a compact
configuration presents a triangular-based pattern, where for each triplet the (smallest) inter-agent angles
is minimized, as shown in Fig. 2. Note that minimizing the inter-agent angles comes to maximizing
the node degree (the number of neighbours of each node). This work is motivated by the vast literature
on bearing-only state estimation and localization and the applications of optimal sensor arrangement

Fig. 2. Illustration of the control objectives.
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 5

solutions. This makes angle-based formation control particularly appealing, especially considering that
angle-based approaches are still rare in the literature.

The contributions of this article can finally be summarized as follows. First, we present a distributed
control strategy, where each mobile sensor makes decisions based only on the limited information from
its neighbours. Co-ordination is enforced through simple yet effective control laws, in opposition to more
complex optimization-based approaches. Second, we relax the assumptions on the initial configuration
and sensing/communication graph. Unlike Summers et al. (2009); Anderson et al. (2010), that require a
all-to-all communication graph, or Cao et al. (2007); Basiri et al. (2010) that assume the existence of an
initially formed triangular configuration, we show here how one can achieve a compact, triangular-based
configuration even if there is no triangular sensing pattern at time zero. Finally, and most important, our
results hold for configurations of four agents, and for which formal stability properties are derived. The
case of a three agent network, as commonly considered in literature (Cao et al., 2007; Basiri et al., 2010;
Bishop, 2011a), is a particular case of the systems considered in this manuscript. Most important, the
above mentioned articles fail to handle most of the scenarios considered here, due to their assumptions
on the initial configuration. This is discussed later in Section 6.3. To the best of the authors knowledge,
no similar results on provably stable, angle-based formation control with connectivity constraints exist
in the literature for systems with more than three agents.

The rest of the article is organized as follows: Section 2 describes the system and important
concepts/definitions. Sections 3 and 4 deal with controller design and stability analysis for the dis-
persion and compactness algorithms, respectively, while Section 5 provides a sequential controller.
Finally, Section 6 includes simulation results and Section 7 presents our conclusions and perspectives
for future research.

2. System and framework definition

2.1. Notation

Throughout the article, R
n denotes the n-dimensional Euclidean space, and R

n×m is the set of n × m real
matrices. The matrix In represents the identity matrix of R

n×n. Finally, for any matrix M ∈ R
n×n, the

notation (M)i denotes the i th row of M, (M)ij the element on the i th row and j th column of M, λk(M)
the k th eigenvalue of M and MT the transpose of M. Moreover, ⊗ stands for the standard Kronecker
product between two matrices. Also, Rot is the rotation matrix of π/2 radians on the clockwise direction.

2.2. System Description

Take N agents operating in the workspace W ⊂ R
2. We consider that the motion of each agent is

described by single integrator dynamics,1 as commonly used in literature (Pavone & Frazzoli, 2006;
Cao et al., 2007; Dimarogonas et al., 2009). Note that other common modelling choices for multi robot-
control also include, e.g. double-integrator dynamics (Ren et al. , 2008; Deshpande et al., 2011; Cao
et al., 2011a) or unicycle kinematic models (Dimarogonas et al., 2007; Basiri et al., 2010; Bishop,
2011a). We then have:

q̇i = ui, i ∈ N = {1, ..., N}, (2.1)

1 Note that simple integrator dynamics can be considered for trajectory generation and used in a trajectory-tracking setup for
controlling more complex systems.
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6 G. RODRIGUES DE CAMPOS ET AL.

where qi ∈ R
2 denotes agent i position, q = [qT

1 , ..., qT
N ]T represents the agents configuration, and ui the

control input for each agent. Define also the vector connecting any two agents (i, j) as:

qij = qj − qi,

and βij as the squared distance between two agents given by:

βij = ‖qj − qi‖2, ∀ i, j ∈ N . (2.2)

Throughout this article, we denote for i ∈ N and d > 0:

Ni,d(t) = {
j ∈ N \{i}| βij ≤ d2

}
,

as the subset of N including all neighbours of agent i, i.e. all nodes that agent i can sense within a radius
d/2. Moreover, |Ni,d | denotes the number of neighbors of agent i. Define for each agent i a d-proximity
graph as:

Pi,d(t) = (Ni,d(t),Υi(t)
)
,

where Υi(t) ⊆ Ni,d(t)× Ni,d(t) is the set of edges connecting agent i to all j ∈ Ni,d at time t.
In the sequel, each agent is suppose to have two (common) overlapping sensing radii such that

d1 < d2, see Fig. 3. It follows that:

d1 = ξd2,

where 0 < ξ ≤ 1. Note that 1/ξ can be viewed as a safety factor: the larger its value, the smaller is the
probability of losing an edge. It is worth mentioning that the use of two overlapping communication radii
is strictly related to the problems treated in this article. We recall that the objective of our controllers
is: (i) to separate agents without losing communication and (ii) to achieve a compact deployment by
controlling the inter-agent angles. Therefore, the smaller radius d1 bounds the area wherein the inter-
agent distances are controlled, while d2-proximity graphs are used to establish a larger domain wherein
we control the inter-agent angles.

2.3. Definitions and assumptions

We introduce the following definitions and assumptions for a triplet (i, j, k).

Fig. 3. Communication radii and potential functions.
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 7

Definition 2.1 A triplet (i, j, k) ∈ N 3 is a Connected Triplet if i, j, k are all distinct and

i, k ∈ Nj,d2 , i /∈ Nk,d2 .

Thus, a Connected Triplet is a connected graph, where the central vertex can sense the other two agents,
while the other two can only sense the central agent. Note that, in terms of notation, the order of agents
matters. This means that, when Connected Triplets are discussed, a triplet (i, j, k) is centered at j.

Definition 2.2 A triplet (i, j, k) ∈ N 3 is a Complete Triplet if i, j, k are all distinct and

i, k ∈ Nj,d2 , i ∈ Nk,d2 .

Then, it follows that a Complete Triplet is a three nodes complete graph.

Throughout this article, we will often refer to the angle formed by a given Connected Triplet (i, j, k),
also called inter-agent angle. For the sake of clearness of the presentation, the following definition is
introduced.

Definition 2.3 A Connected Triplet (i, j, k), where j is the central agent from a geometric point of view,
defines the inter-agent angle θijk such that:

θijk = arccos

(
< qji, qjk >

‖qij‖ · ‖qjk‖
)

, (2.3)

where ‖.‖ represents the Euclidean norm and < . > the scalar product.

An illustrative example of an inter-agent angle is depicted in Fig. 4. The following assumption holds.

Assumption 2.1 For any inter-agent angles θijk , where the (i, j, k) ∈ N 3 is a Connected Triplet according
to Definition 2.1, we assume that cos(θijk) 
= 1 or, in other words, that θijk 
= kπ , k ∈ {0, 1, 2, . . .}.

In the scope of this article, the notion of an inter-agent angle stands for the angle with the smaller
absolute value formed by a Connected Triplet (i, j, k) ∈ N 3. The previous assumption is introduced

(a) (b)

Fig. 4. For a Connected Triplet (i, j, k), and according to Definition 2.3, an illustration of: (a) a valid inter-agent angle and (b) an
invalid inter-agent angle.
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8 G. RODRIGUES DE CAMPOS ET AL.

such that inter-agent angles are well-defined. Hence, angles θijk for which cos(θijk) = 1 are naturally
excluded. Note that similar assumptions, on non-collinear triangular formations, are also considered and
discussed in Cao et al. (2007), and identically in Basiri et al. (2010); Bishop (2011a).

3. Dispersion algorithm

In this section, we propose a potential field-based controller for agents’ dispersion.

3.1. Preliminaries

Given a swarm composed of an arbitrary number of agents, let:

I(d1) = {
q ∈ W | ∀i ∈ N , ∀j ∈ Ni,d2 , 0 < βij ≤ d2

1

}
,

denote the set of feasible initial conditions.2 Take η as an integer, user-defined parameter defining a close
neighbourhood of d1 such that d1 + η < d2, see Fig. 3. Then, the set of desired, final configurations for
the dispersion protocol should satisfy the following condition:

F(d1, η) = {
q ∈ W | ∀i ∈ N , ∀j ∈ Ni,d2 , (d1 − η)2 < βij < (d1 + η)2

}
.

In this section, we focus on inverse agreement protocols, using a potential-field approach to ensure
agents’ dispersion. We based our approach on the results of Dimarogonas et al. (2009), and improve them
by using additional fields to guarantee connectivity maintenance. Consider Fig. 3, where the potential
function γij guaranteeing dispersion is illustrated. The key features of this function are described as
follows:

Definition of the potential function γij for a couple of distinct agents (i, j) ∈ N 2:
• γij is a decreasing function, twice continuously differentiable

• γij tends to +∞ when βij tends to zero.

• ∂γij
∂βij

= 0 if βij ≥ d2
1 .

In Dimarogonas et al. (2009), it has been shown in that a control strategy based on γij will lead to
a configuration in which the minimum distance between any pair of agents is larger than a specific
lower bound, equal to the agents’ sensing radius. However, function γij cannot guarantee connectivity
maintenance on itself. In order to tackle this problem, we introduce in this article a new, additional
function ψij ∈ C([0, +∞)), also illustrated in Fig. 3. Note that η is a positive scalar defining the size of
the desired neighborhood for connectivity maintenance. The function ψij is defined such that:

Definition of the potential function ψij for a couple of distinct agents (i, j) ∈ N 2:
• ψij tends to ∞ when βij tends to (d1 ± η)2.

• ψij = 0 and
∂ψij
∂βij

= 0 if βij = d2
1 .

2 The set I(d1) has been specifically defined for the two-layered strategy presented later in this article. Nevertheless, if the
dispersion controller is considered independently, the assumptions on the initial configuration can be relaxed to any configuration
satisfying βij > 0, βij 
= (d1 ± η)2, ∀i ∈ N , ∀j ∈ Ni,d2 .
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 9

Given its bounding characteristics, ψij is particularly adequate to cases where the considered com-
munication graph is static, that is, when no new edges are added whenever an agent, not initially located
within the sensing zone of another agent, enters this zone. In practical situations, however, it is useful to
consider the creation of new edges whenever an agent enters the sensing zone of another robot. Hence,
we define ψh

ij that ensures a smooth transition to ψij such that:

Definition of the additional potential function ψh
ij for a couple of distinct agents (i, j) ∈ N 2:

• ψh
ij is differentiable everywhere

• ψh
ij = 0 and

∂ψh
ij

∂βij
= ∂ψij

∂βij
when βij = d2

1 .

• ψh
ij is strictly increasing when d2

1 < βij < (d1 + η)2.

• ψh
ij is constant when βij > (d1 + η)2.

Through the remaining of the article, the subset of the sensing zone of agent i including all agents that
form a new edge with agent i will be defined as:

N h
i,d1+η = {

j ∈ N \{i}, βij < (d1 + η)2, β̇ij < 0
}

.

Finally, let us present here LaSalle’s Invariance Principle.

Theorem 3.1 LaSalle’s Invariance Principle Khalil (2015): Let Ω ⊂ D be a compact set that is posi-
tively invariant with respect to ẋ = f (x). Let V : D → R be a continuous differentiable function such
that V̇(x) ≤ 0 inΩ . Let E be the set of all points inΩ such that V̇(x) = 0. Let M be the largest invariant
set in E. Then every solution starting in Ω approaches M as t → ∞.

3.2. Controller design

In the sequel, we present the dispersion controller denoted by u1, whose structure is illustrated in Fig. 5.
For each communicating pair of agents (i, j), γij is active implying that agents will diverge from each
other (Dispersion). Designed to keep connectivity (Confinement), ψij becomes active at t∗ij , where:

t∗ij = min{t| βij(0) < d2
1 ,βij(t) = d2

1 , ∀i ∈ N , ∀j ∈ Ni,d1}. (3.1)

This means that t∗ij represents the instant for which the distance between two agents i and j, initially
closer than d1 and such that β̇ij > 0, reach for the first time the threshold distance d1. Consequently, the
instant for which the length of an edge of the overall network reaches the threshold distance d1, for the
first time, is defined as:

t∗a = min {t| eq. (3.1) is satisfied},

and corresponds to the smallest value of all t∗ij among all pairs i, j ∈ N for whichβij(0) < d2
1 . The structure

of our approach is illustrated in Fig. 5, presenting the controller sequence regarding the evolution of both
time and βij. For any pair of agents (i, j) for which βij(0) < d2

1 , the dispersion controller is applied while
t < t∗ij . Then, the connectivity maintenance controller takes over for all t > t∗ij , whenever βij < (d1 +η)2.
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10 G. RODRIGUES DE CAMPOS ET AL.

Fig. 5. Dispersion controller’s time schedule for any initially close pair of agents (i, j).

The partial derivative of the potential functions can be computed as ∂γij/∂qi = 2
∂γij
∂βij
(Dij)iq,

∂ψij/∂qi = 2
∂ψij
∂βij
(Dij)iq, and their gradient as ∇γij = 2

∂γij
∂βij

Dijq and ∇ψij = 2
∂ψij
∂βij

Dijq,

where the matrix Dij is given as:

Dij = D̄ij ⊗ I2,

with D̄ij ∈ R
N×N such that D̄ii = 1, D̄ij = −1 and all other terms are equal to zero. Thus, the proposed

controller can be expressed as:

ui1 = −
∑

j∈Ni,d1

∂γij

∂qi
−

∑
j∈N h

i,d1+η

∂ψ̄ij

∂qi
−

∑
j∈Ni,d2

∂ψ̄h
ij

∂qi
. (3.2)

In the previous equation, ψ̄ij and ψ̄h
ij are given by:

ψ̄ij(t) =
{

0, if t < t∗ij ,

ψij, otherwise,
ψ̄h

ij(t) =
{
ψh

ij , if t < t∗∗
ij ,

ψij, otherwise ,

where

t∗∗
ij = min{t| βij(0) > d2

2 , β̇ij < 0,βij(t) = d2
1 , ∀i ∈ N , ∀j ∈ N h

i,d1+η}.

It is worth mentioning that according to previous definitions, both ψ̄ij(t) and ψ̄h
ij(t) are continuous with

respect to βij and β̇ij. Furthermore, note that the function ψ̄h
ij is defined such that it switches, in a smooth

way, from ψh
ij to ψij whenever an agent j forms a new edge with agent i. The reader should refer to

Section 3.1 for the definitions of ψij and ψh
ij .

Knowing that equation (3.2) corresponds to the sum of the negative gradients of the potential func-
tions, this yields that each agent is then subject to both a repulsive and attractive force with respect to
any other agent within its sensing zone. Define now:

ψH
ij =

{
ψ̄h

ij , if j ∈ N h
i,d1+η,

ψ̄ij, otherwise
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 11

and

σH
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ψ̄h
ij

∂βij
, if j ∈ N h

i,d1+η,

∂ψ̄ij

∂βij
, otherwise .

We then have:

u1 = −2 [R1 ⊗ I2 + R2 ⊗ I2] q, (3.3)

where R1 and R2 are N × N matrices defined as:

(R1)pq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈N\{p}

∂γpj

∂βpj
, if p = q,

− ∂γpq

∂βpq
, otherwise.

(R2)pq =

⎧⎪⎨
⎪⎩

∑
j∈N\{p}

σH
pj , if p = q,

− σH
pq, otherwise.

3.3. Stability Analysis

This section provides a stability analysis for the dispersion algorithm. The proposed controller ensures
the deployment of all agents in the workspace while preserving connectivity (i.e. avoiding loosing edges).
The next result holds for any number N of agents. For the sake of clarity of the presentation, all proofs
are presented at the end of the article.

Theorem 3.2 Consider N > 0 agents described by (2.1) and driven by control law (3.2). Assume a
set of feasible initial conditions I(d1). Then the system reaches a final static configuration belonging to
F(d1, η).

Proof. The complete proof is presented in the appendix, Section 8.1. �

In this section, we presented a potential field-based controller for the deployment of agents. We have
proved its efficiency and stability, for any value of the number of agents N , η or ξ . It is worth mentioning
that the use of attraction/repulsion potential fields or, more generally, navigation functions, offers two
main benefits. Firstly, decentralized navigation functions show a considerably low complexity with
respect to the number of agents. Secondly, it is possible to combine them with different, more realistic
dynamic models.

4. Compactness controller

In order to appropriately deploy a group of agents able to carry out sensing and communication tasks,
we focus our attention on the compactness of the swarm. More precisely, our approach is based on
the minimization of the inter-agent angles. We aim at achieving compact formations composed of
equilateral triangles, which inherently means that each angle should be equal to π

3 . Considering this
value as a reference, the proposed compactness controller relies on a force proportional to the difference
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12 G. RODRIGUES DE CAMPOS ET AL.

between the angle value and the reference, that is applied to each Connected Triplet. Note that this force
lies on a perpendicular direction of qij, denoted q⊥

ij .
Motivated by applications where geometrical and connectivity/communication aspects of the forma-

tion are crucial for the success of the mission, we provide in the sequel results for four-agents networks,
as a proof of concept of our strategy.

4.1. Preliminaries

The following assumption is introduced.

Assumption 4.1 We assume that η et ξ are, respectively, sufficiently close to 0 and 1. This inherently
means that, upon dispersion, the distance separating two neighbors is taken to be constant and equal to d1.

Let configurations where all Connected Triplets have two equal edges of length d1 belong to:

E(d1) = {
q ∈ W | for all Connected Triplets (i, j, k), βij = βjk = d2

1

}
.

Furthermore, define the set including all configurations where each agent has at most Δ neighbors in
d2 - proximity graph as:

D(d2,Δ) = {
q ∈ W | ∀i ∈ N , |Ni,d2 | ≤ Δ

}
,

where Δ is a positive user-defined integer. Moreover, let set of feasible initial conditions be given as:

F ′(d1, d2) = D(d2, 2) ∩ E(d1), (4.1)

and the a set of desired configurations as:

G(d1, d2) =
{

q ∈ W |∀j ∈ N , ∃(i, k) ∈ N 2
j,d2

st. βij = βjk = βki = d2
1

}
,

where all triplets (i, j, k) are Complete Triplets. Throughout the sequel, and unless told otherwise, we will
consider a network of N = 4 agents with Δ = 2, i.e. vehicles have at most two neighbors. A relaxation
of these assumptions is currently ongoing work. We are now ready to present our control strategy for
compactness control. The rest of this section is divided in two parts: the first part considers static control
gains, while the second uses adaptive control gains in order to cope with singular configurations.

4.2. Compactness controller with constant gains

4.2.1. Controller design The underlying concept of our control strategy relies on a force, proportional
to the difference between the angle value and the chosen reference, that is applied in a perpendicular
direction of qij, denoted q⊥

ij . More precisely, using the physical and mechanical concepts relating the
applied force and the error regarding the equilibrium position of the system, a force proportional to
difference between the actual angle value and the desired one is applied to the concerned agents. An
illustration of this concept is presented in Fig. 6.
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 13

Fig. 6. Configuration of four agents.

For each agent i, the local compactness controller is then given as:

ui2 = −
∑
i∈N

∑
j∈N\{i}

∑
k∈N\{i,j}

χijkRotqji, (4.2)

with

χijk =
{

K[θijk − sign(θijk)
π

3
], if (i, k) ∈ N 2

j,d2
\N 2

j,d1
,

0, otherwise,

where K is a positive and constant gain. Rewritten in vector form, equation (4.2) yields:

u2 = − [(R3 ⊗ I2)Rot] q, (4.3)

where

(R3)pq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈N\{p}

∑
k∈N\{p,j}

χpjk , if p = q,

∑
k∈N\{p,q}

χpqk , otherwise.

By acting directly over the geometrical structure of the formation, we will show that controller (4.2) is
able to improve the compactness of the swarm. Note that the value of the inter-agent angle within a
triplet can only be computed by the central vertex, which can transmit this information to its neighbours.
Hence, each robot decisions are only based on the limited information provided by its neighbours, see
equation (4.2), without the existence of a formal central node or leader vehicle. Therefore, the distributed
nature of our approach remains unchanged.

4.2.2. Stability analysis The following results hold. Note that, for the sake of the clarity of the
presentation, all the proofs are presented at the end of the article.

Theorem 4.1 Consider N = 4 agents described by (2.1), denoted by (i, j, k, l) and driven by control law
(4.2). Note that i and j are central vertices. Assume that the set of initial conditions is F ′(d1, d2). Then
the system reaches a final configuration belonging to G(d1, d2).
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14 G. RODRIGUES DE CAMPOS ET AL.

Proof. The complete proof is presented in the appendix, Section 8.2. �

Theorem 4.2 Consider N = 4 agents described by (2.1), denoted by (i, j, k, l) and driven by control law
(4.2). Furthermore, assume an initial configuration as depicted in Fig. 7(a), belonging to I ′(d1, d2) =
D(d2, 3) ∩ E(d1), such that Δ = 3 and where agent j is assumed to be central vertex. Then the system
reaches a final configuration where the absolute values of all inter-agent angles θijk , θlji, θkjl are equal to
2π/3.

Proof. The complete proof is presented in Section 8.3. �

Theorem 4.3 Consider N = 3 agents described by (2.1), denoted (i, j, k), and driven by control law
(4.2). Assume the set of initial conditions F ′(d1, d2), where j is the central vertex. Then the system
reaches a final configuration belonging to G(d1, d2).

Proof. The complete proof is presented in the appendix, Section 8.4. �

Previous results exploit the concept of compactness, stemming from the ideal connectivity properties of a
three-agent network, as shown in Fig. 2. As a particular case of Theorem 4.1, the evolution of a three-agent
configuration was also studied in Theorem 4.3. It seems however, clear that the original configuration
of the swarm plays an important role over the stability properties of the algorithm. As the results of
Theorem 4.2 indicate, there exist indeed certain configurations that can lead the system to undesired
equilibria. More precisely, Theorem 4.2 shows that a four-agent swarm, in an initial configuration as
presented in Fig. 7(a), will eventually reach a final configuration where |θijk|, |θlji|, and |θkjl| are equal
to 2π/3. This can in fact be explained by a perfect balance of the forces applied to each agent, i.e. the
sum of the vectorial contributions of each term of (4.2) is null such that ui = 0, ∀i ∈ N .

4.3. Compactness controller with variable gains

In order to avoid singular equilibrium and to generalize the previous results so to cope with singular
formations, we propose in the sequel a control solution based on adaptive and variable gains.

(a) (b)

Fig. 7. Illustration of a singular configuration and the representation of k(|θijk |).
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 15

4.3.1. Controller design Consider K(θijk) as an angle-dependent gain and defined as:

K(θijk) = 1

k(|θijk|)2
∂k(|θijk|)
∂θijk

, (4.4)

where k(|θijk|) is depicted in Fig. 7(b). In a identical formulation as before, a new compactness controller
can be expressed as follows:

ui3 = −
∑
i∈N

∑
j∈N\{i}

∑
k∈N\{i,j}

χ ′
ijkRot(Dij)iq (4.5)

with

χ ′
ijk(t) =

{
K(θijk)(θijk − sign(θijk)

π

3
), if (i, k) ∈ N 2

j,d2
\N 2

j,d1
,

0, otherwise.

4.3.2. Stability analysis The following result holds for a four-agent network.

Theorem 4.4 Consider N = 4 agents described by (2.1), denoted (i, j, k, l) and driven by the control law
(4.5). Furthermore, assume an initial configuration as depicted in Fig. 7(a), belonging to I ′(d1, d2) =
D(d2, 3) ∩ E(d1), where agent j is assumed to be central vertex and the initial inter-agent angles are
assumed to be non-equal. Then the system will reach a final configuration belonging to G(d1, d2).

Proof. The complete proof is presented in the appendix, Section 8.5. �

Given the structure of K(θijk), the proposed solution can be seen as priority based strategy, where small
angles have a higher priority (higher K(θijk)’s value), and large angles a lower one (smaller K(θijk)’s
value). Thus, singular configurations as those studied in Theorem 4.2 can now be appropriately handled.

In this section, we analysed the convergence properties of the proposed compactness controller.
Results have been driven for four-agent networks, as a proof of concept of the provided strategy. These
results show the potential of these new control protocols for multi-robot scenarios where the connectivity
properties of the network are crucial.

5. Sequential controller

In the sequel, we provide a novel and efficient controller for robot deployment and formation shape
control. A sequential controller, composed of the two algorithms presented in previous sections, will be
given: one part ensuring dispersion; the second one ensuring the minimization inter-agent angles. The
proposed structure is illustrated in Fig. 8.

5.1. Preliminaries

Consider a Connected Triplet where agents are initially closer than a distance d1. The smallest time
instant for which the distance separating two neighbours reaches the threshold distance d1, for the first
time and for two edges, is defined as:

t∗ijk = min{t| βij(0),βjk(0) < d2
1 ,βij(t

∗
ijk) = βjk(t

∗
ijk) = d2

1 , j ∈ N , i ∈ Nj,d1 , k ∈ Nj,d1\{i}}. (5.1)
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16 G. RODRIGUES DE CAMPOS ET AL.

Fig. 8. Sequential controller’s time schedule.

Furthermore, the smallest time instant for which the previous condition is satisfied, over the all
formation, can be formally defined as:

t∗b = min {t| eq. (5.1) is satisfied}.
Thus, it follows that t∗b ≥ t∗a . Keeping in mind previous definitions, the force minimizing inter-agent
angles becomes active for each Connected Triplet (i, j, k) at t = t∗ijk , see Fig. 8. Note that the dispersion
algorithm’s final configuration corresponds then to the initial set of the compactness algorithm. Thus,
define:

I ′′(d1, d2) = D(d2, 2) ∩ I(d1).

as the feasible set of initial configurations.

5.2. Controller design

Due to its nature, the overall control framework can be seen as a hybrid system with transitions at instants
when ψij is activated and when new edges are added to the graph, or when compactness forces are being
applied. Denote agent i’s control as

ui = ui1 + ui2,

such that u = [u1, . . . , uN ]T . Define now:

(R1)pq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈N\{p}

∂γpj

∂βpj
, if p = q,

− ∂γpq

∂βpq
, otherwise,

(R2)pq =

⎧⎪⎨
⎪⎩

∑
j∈N\{p}

σH
pj , if p = q,

− σH
pq, otherwise

and

(R3)pq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈N\{p}

∑
k∈N\{p,j}

χpjk , if p = q,

∑
k∈N\{p,q}

χpqk , otherwise.
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 17

In a similar formalization as in Goebel et al. (2009), we have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
q̇i = − [2α((R1)i ⊗ I2)+ 2α((R2)i ⊗ I2)] q,
θ̄ijk = π ,

if t < t∗ijk ,

{
q̇i = − [2α((R1)i ⊗ I2)+ 2α((R2)i ⊗ I2)+ λ((R3)i ⊗ I2)Rot] q,
θ̄ijk = θijk ,

otherwise.

(5.2)

Where α and λ are weighting parameters of appropriate dimensions such that α � λ. In other words,
dispersion control is prioritized with respect to compactness. It is easy to see that the proposed controller
presents an hybrid structure. More precisely, it exhibits both continuous and discrete dynamic behaviours,
with jumps described by the evolution of θ̄ijk . Therefore, it follows that the system’s state evolves both
continuously and discretely.

5.3. Stability analysis

Based on our results presented in Sections 3 and 4, we are going to analyse the proposed sequential
controller’s performances. The main result of this article is present in the following.

Theorem 5.1 Consider N = 4 agents (2.1) driven by the control law (5.2). Assume the set of initial
conditions I ′′(d1, d2). Thus, the system reaches a final configuration belonging to G(d1, d2).

Proof. Since the two stages are sequentially related, we consider a global Lyapunov function candidate
Vg(q) given by:

Vg(q) =
∑
i∈N

∑
j∈N\{i}

[
γij + ψH

ij

] +
∑
j∈N

∑
i∈Nj,d2

∑
k∈Nj,d2

\{i}

(
|θ̄ijk| − π

3

)2
. (5.3)

For all t < t∗b , Vg(q) corresponds to:

Vg(q) =
∑
i∈N

∑
j∈N\{i}

[
γij + ψH

ij

] + C1, for t < t∗b ,

where C1 = ∑
j∈N

∑
i∈Nj,d2

∑
k∈Nj,d2

\{i}
(|θ̄ijk| − π

3

)2
is constant (recall the definition of θ̄ijk). Under

Assumption 4.1, it follows from Theorem 3.2 that V̇g(q) is strictly negative. This means that the system
will eventually reach a configuration where agents are separated from any other agent within its sensing
zone by a distance exactly equal to d1, and where each agent has at most two neighbours.

At t = t∗b , the compactness controller becomes active for at least one triplet (i, j, k) while the
dispersion controller remains active for all agents (i, j) satisfying βij < d2

1 . Therefore, we consider the
function:

Vg(q) =
∑
j∈N

∑
i∈Nj,d2

∑
k∈Nj,d2

\{i}

(
|θ̄ijk| − π

3

)2 +
∑
i∈N

∑
j∈N\{i}

[
γij + ψH

ij

]
, for t > t∗b .
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18 G. RODRIGUES DE CAMPOS ET AL.

In the previous expression, the left hand side term corresponds to the compactness component, which
can now be analysed using Lemmas 4.1 and 4.3. Note that, as mentioned before, the controller (5.2)
corresponds to a hybrid system where transitions are generated by triplets (i, i, k) that become Connected
Triplets (see Definition 2.1) and are incorporated in the definition of θ̄ijk . At each instant t = t∗ijk , the
value of θ̄ijk switches from π to the actual value of θijk of a triplet (i, j, k). Define Δθ̄ijk = |θijk| − π . It
follows that:

Δθ̄ijk < 0, ∀ Connected Triplet (i, j, k) . (5.4)

Define also the sum of increments of Vg(q) as
∑
ΔVg(q), which are related to the switchings on θ̄ijk

values for the different triplets (i, j, k). Thus, it follows from (5.4) that:

∑
ΔVg(q) < 0, for t < t∗b .

Considering Assumption 4.1 and the results of Theorem 3.2 and Lemmas 4.3 and 4.1, we then have:

V̇g(q) < 0, for t ∈ (t∗b , ∞).

Since V̇g(q) < 0 for t < t∗b , V̇g(q) < 0 for t > t∗b , and that all ΔVg(q) < 0, it follows from
Theorem 20 of Goebel et al. (2009) that the system is asymptotically stable. Agents will eventually reach
a configuration belonging to G(d1, d2), where equilateral triangles are formed within the formation and
all internal angles are equal to π/3. This concludes the proof. �

6. Simulation results

As a main case study, we consider a scenario as illustrated in Fig. 1, where a group of robots are
deployed to carry out sensing and communication tasks. We are motivated by applications such as
intruder detection, search and recover operations or the support to human-driven operations in danger-
ous environments. For such scenarios, control policies are required to guarantee advanced capabilities
for dynamic reconfiguration so to guaranteed performance subject to communication and sensing con-
straints. We present here simulation results demonstrating that the proposed compact deployment of
robots, leading to improved connectivity properties of the swarm, is effective and useful for increased
safety, redundancy and efficiency of the measurement and decision-making tasks.

6.1. Case study: mobile sensors/routers deployment

Consider a static base station (BS), and a swarm of N = 4 agents and one human operator (HO)
distributed within a constrained environment (e.g. a building or an accident area). In order for the
base station to receive measurement data or to transmit relocation orders or warning signals to the
robots/human operator, it is important to establish a communication bridge between the different ele-
ments. Hence, our goal is to reach a (static) configuration offering increased agent-to-agent, base
station-to-agent and human operator-to-base station connectivity. We will pay a particular attention
to the resulting configuration and its advantages in what concerns the inter-agent communication links
or communication hops between the human operator and the base station. Note that issues related to
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 19

Table 1 Simulation results: parameters and connectivity details for Cases 1 and 2

Parameter / Unit Agent 1 Agent 2 Agent 3 Agent 4 BS HO

Position (x;y) [m] :
Case 1 (1.2; 0.8) (1.3; 1.4) (0.78; 1.91) (1; 2.7) (-4; 1.5) (2.4; -0.4)
Case 2 (0.4; 1.5) (1.5; 1.2) (0.5; 1.5) (1.6; 1.3) (-4; 1.5) (2.4; -0.4)

Number of neighbours
(including BS and HO):
Case 1 (1+1) (2) (2+1) (1) (1) (1)
Case 2 (1+1) (2) (2+1) (1) (2) (0)

obstacle avoidance or indoor navigation are outside of the scope of this article, and are not considered
here.3

Table 1 describes the initial conditions for Cases 1 and 2, and the corresponding simulation results
are presented in Figure 9. In all figures, the red triangle represents the base station, while the orange
square represents the human operator. Moreover, the dashed cones represent the communication ranges
for the base station and human operator, the red dashed line d2/2, the blue complete line d1/2, such
that d1 � d2 � 1. Furthermore, in order to better illustrate the concept of compact formations as
considered in this article, the resulting triangular pattern is shown in the different figures by the yellow
lines.

In Fig. 9, the left- and right-hand columns correspond to Cases 1 and 2, respectively. In Fig. 9(a)
one can see that only agent 3 communicates with the base station. Considering that agents can relay
information, two communication hops are necessary for information to flow between the base station
and agents 2 and 4, three hops to reach agent 1 and up to four hops for information/orders/feedback
to reach the human operator. From a connectivity point of view, Case 2 is more challenging: there is
no connection between the human operator and the base station, as well as no link between the human
operator and the robot swarm, see Fig. 9(b).

Figures 9(c) and 9(d) show, for the two cases, the resulting configuration of the dispersion stage.
Despite the increased area coverage, where all agents are now at a fixed distance of each other, there
are however no clear improvements on the connectivity properties: several hops are still needed for the
human operator to communicate with the base station in Case 1, while the human operator remains
isolated in Case 2.

Finally, Figs 9(e) and 9(f) show the resulting configuration after the compactness control stage,
which offers clear advantages discussed as follows. First, one can see that the number of inter-agent
links has increased: all agents have at least two neighbours, and up to four neighbours for agents 1 and 3
(including the BS and the HO) in Case 1, for instance. For both Cases 1 and 2, it is also clear that the final
configuration offers an improved information flow: information from the base station can reach all agents
and the human operator within two hops (instead of the previous four hops for Case 1). Most important,
the control of the formation compactness for Case 2 allowed the creation of a link between the human

3 Note that a potential field based approach could also be used in the future to extend these results, so to guarantee
repulsion/attraction with respect to obstacles or the base station/human operator..
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20 G. RODRIGUES DE CAMPOS ET AL.

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Simulation results for Case 1 (left-hand side) and Case 2 (right-hand side).
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DISTRIBUTED CONTROL OF COMPACT FORMATIONS FOR MULTI-ROBOT SWARMS 21

Table 2 Simulation results: parameters for Case 3, 4 and 5

Parameter / Unit Agent 1 Agent 2 Agent 3 Agent 4

Position (x;y) [m]:
Case 3 (0; 0.35) (0.4; 0.9) (0.2; 1.7) –
Case 4 (0.1; 2.1) (0.3; 0.9) (0.6; 1.4) (1.2; 1.8)
Case 5 (1.1; 1.4) (1.35; 1.5) (1.25; 1.5) –
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Fig. 10. Simulation results for Case 3: a configuration of three agents.

operator and both the swarm and base station, see Fig. 9(f). This represents an important improvement
with respect to the initial configuration, that dispersion control, if considered independently, would have
not been able to achieve.

6.2. Particular configurations

We validate here the results of Theorems 4.2 and 4.3. The simulation parameters for Cases 3 and 4
are given in Table 2. Figure 10 shows the trajectories’ evolution for Case 3, i.e. a three agent swarm.
One can observe that the final configuration satisfies the control objectives, and that a Complete Triplet
has been formed where all agents are separated by a predefined distance. See Fig. 10(c). The results
corresponding Case 4 are given in Fig. 11, and they consider the particular configuration four-agent
depicted in Fig. 11(a). More precisely, the reader can see in Fig. 11(b) the resulting configuration when
controller (4.2) is applied. Note that such configuration corresponds to a singular equilibrium where all
angles are equal to 2π/ = 3, as studied in Theorem 4.2. Instead, Fig. 11(c) shows the resulting formation
when the adaptive-gain controller (4.5) is used. Clearly, singular configurations such as the one observed
in Fig. 11(b) are avoided, and a compact formation achieved.

6.3. Discussion

The main novelty of this work relies on the mixture of distance-based and angle-based arguments
for distributed formation shape control under communication constraints. In order to allow a better
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Fig. 11. Simulation results for Case 4: a singular configuration of four agents.

understanding of this work, we provide here a brief discussion on its distinctive features and advantages
with respect to the existing literature.

Even if distance-based arguments are often used in the literature, as they can generally capture
safety and geometric constraints, such approaches are however, unable to guarantee compactness, as
considered in this article, for scenarios such as in Fig 10(a) or 6. The same is also true for existing
angle-based approaches (Cao et al., 2007; Summers et al., 2009; Basiri et al., 2010; Bishop, 2011a),
which assume all-to-all communication graphs or at least an initially formed triangular configuration.
While our approach still holds for those cases (see Fig. 12), the mentioned solutions are, once again,
unable to reach a compact triangular formation from an initial configuration as in Fig. 10(a). This
comes from the fact that the sensing/communication link between agent 1 and 3 is absent. Another
important point is that the existing triangular control approaches do not explicitly consider connectivity
and communication/sensing constraints. Hence, connectivity maintenance cannot be explicitly enforced
and agents are not guaranteed to maintain suitable distances between them, as illustrated later in Fig. 12.
Finally, and even if a few of the aforementioned works have been extended to cope with robot swarms
of four vehicles, they share the same initial assumptions mentioned before, which makes them unable
to cope with configurations such as a connected triplet (Fig. 10(a)) or a four agent system such as in
Fig. 6. Therefore, we propose here a more general set of results that can be applied to a larger set of
configurations.

To illustrate some of the aforementioned aspects, we present now some comparative results between
the proposed approach and the results of Bishop (2011a), which is particularly close to the scope of
this work. In Bishop (2011a) each agent measures two inter-agent bearings in a local coordinate system
and is tasked with establishing and maintaining a desired angular separation relative to its neighbours.
According to the article’s own notation, we have prescribed a configurationα∗

i = π/3, ∀ i, and considered
the original modelling and control setup described in Bishop (2011a). The reader can refer directly to
the article for further details. The simulation parameters for Case 5 are given in Table 2, and the initial
configuration is presented in Fig. 12(a), where all agents can sense each other, as requested in Bishop
(2011a). In Fig. 12(b) one can see the compact configuration obtained with our sequential approach. As
expected, agents reach an equilateral triangular formation where the internal angles are all equal to π/3.
The configuration in Fig. 12(c) was obtained using the approach given in Bishop (2011a). While agents
reach the prescribed configuration, where all the bearing angles are equal to π/3, one can however,
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Fig. 12. Simulation results for Case 5: comparison between the proposed sequential solution and the approach of Bishop (2011a).
In subfigure (c), the red square region represents the area occupied by the configuration presented in subfigure (b) in the same
co-ordinate frame. This region is meant to highlight the size difference between the resulting configurations. Note that the
configuration in subfigure (c) does not satisfy the connectivity constraints any more.

observe that robots travel larger distances in the workspace until they reach a stable, static configuration
(see the range of the final positions). As shown in the figure, agents are separated from each other of a
distance denoted by d ′, which is almost fifteen times bigger than d2 (red, dashed line in the remaining
figures). This comes from the fact that the triangular control strategy of Bishop (2011a) does not explicitly
accounts for communication constrains, and is therefore unable to guarantee connectivity maintenance.
For the sake of comparison, the (red delimited) area occupied by the agents in Fig. 12(b) is also depicted
in Fig. 12(c).

7. Conclusion and perspectives

We proposed an effective control strategy for the compact deployment of robots. Using angular-based
arguments, we showed how to control the compactness of the swarm in order to improve the connectivity
properties of the graph. First, we have shown the efficiency of our potential-field based controller that
ensures agents’ dispersion while keeping the graphs’ connectivity and avoiding collisions. Second,
we proposed a compactness controller that acts on the inter-agent angles defined within the swarm.
Finally, a sequential formulation composed of both the dispersion and compactness control laws was
proposed and its stability analysed based on hybrid systems’ theory. To improve this work, future research
should consider larger systems or the effect of noise on position measurements. Moreover, the proposed
framework could also be extended to consider agents with varying and not necessarily common radii,
for instance, or cases where agents are moving in the environment.
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8. Appendix

8.1. Proof of Theorem 3.2

Consider Vd as a Lyapunov function such that:

Vd(q) =
∑
i∈N

∑
j∈N\{i}

[
γij(βij)+ ψH

ij (βij)
]

. (8.1)

For the sake of readability, the argument of the Lyapunov function will be omitted. We compute

∇γij = 2
∂γij
∂βij

Dijq and ∇ψh
ij = 2

∂ψh
ij

∂βij
Dijq, and

∂γij

∂βij
= ∂γji

∂βji
,

∂ψij

∂βij
= ∂ψji

∂βji
, σH

ij = σH
ji ,

due to symmetry. Thus, it follows that:

∇Vd =
∑
i∈N

∑
j∈N\{i}

[∇γij + ∇ψH
ij

] = 4(R1 ⊗ I2)q + 4(R2 ⊗ I2)q = 4 [(R1 + R2)⊗ I2] q.

Finally, the derivative of the Lyapunov function can be expressed as:

V̇d = (∇Vd)
T q̇ = −8‖[(R1 ⊗ I2)+ (R2 ⊗ I2)]q‖2. (8.2)

Therefore, V̇d is strictly negative for all t > 0, guaranteeing the system’s convergence. Let us discuss
this conclusion. Consider any t < t∗a . For any two initially close agents such that βij(0) < d2

1 , ∀j ∈ Ni,d1 ,

we have
∂γij
∂βij

< 0 if βij < d2
1 . Moreover,

∂γij
∂βij

= 0 if βij ≥ d2
1 , and therefore βij = d2

1 corresponds to the

equilibrium point of γij. Since the contribution of the remaining potential fields is null for βij < d2
1 , it

follows that for any two agents β̇ij > 0 such that βij will eventually reach a close neighbourhood of d2
1 .

At t = t∗a , the potential function ψij is activated for at least one pair of agents. For this pair of agents,
two evolution cases are possible: either β̇ij < 0 such that (d1 − η)2 < βij < d2

1 (situation [i]), or β̇ij > 0
such that d2

1 < βij < (d1 + η)2, (situation [ii]):

[i] By definition, if (d1 − η)2 < βij < d2
1 , the quantities

∂γij
∂βij

and
∂ψij
∂βij

are strictly negative. This means

that throughout (3.2) a repulsive force is applied to agents i and j, and therefore β̇ij > 0. Moreover,
since Vd tends to +∞ whenever βij tends to (d1 −η)2, we can conclude that the distance separating
agents will never reach (d1 − η)2.

[ii] By definition, if d2
1 < βij < (d1 + η)2, the quantities

∂γij
∂βij

and
∂ψij
∂βij

are equal to zero and strictly

positive, respectively. This means that throughout (3.2) an attractive force is applied to agents i and
j and therefore β̇ij < 0. Since Vd tends to ∞ when βij tend to (d1 + η)2, we can conclude that the
distance separating agents will never reach (d1 + η)2.

Considering the specific design characteristics of ψH
ij , it follows that if a new edge is created, i.e. if the

distance separating agents i and j is lower than a given threshold d1 + η, the transition between ψh
ij and

ψij is held in a sufficiently smooth manner. This means that once an edge is added it is never deleted.
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Thus, this yields that Vd(q(t)) ≤ Vd(q(0)) for all t ≥ 0 and Vd → ∞ when βij → d2
1 ±η for at least one

pair of agents (i, j). Then, we can conclude that q(t) ∈ F(d1, η) for all t ≥ 0 where all agent pairs that
come into distance less or equal to d1 + η for the first time, remain within distance d ∈ [d1 − η, d1 + η]
for all future times. In the sequel, we use LaSalle’s Invariance Principle. According to Theorem 3.1, if
there exists a Lyapunov function whose derivative along the systems trajectories is negative semidefinite
and no trajectory other than the origin can stay identically at points where V̇d = 0, then the origin is
asymptotically stable. By LaSalle’s Principle, the trajectories of the closed loop system converge to the
largest invariant subset of the set:

S = {
q| V̇d = 0

} = {q|([R1 + R2] ⊗ I2)q = 0} .

Note that within S we have q̇ = u1 = −2 [R1 ⊗ I2 + R2 ⊗ I2] q = 0 ⇒ u1 = 0 for all i ∈ N , i.e. all
agents eventually stop. Due to the invariance of I(d1), no trajectory of the closed loop system starting
from I(d1) can ever leave the set, i.e. d2

1 ≥ βij > 0 , ∀t ≥ 0. Thus, one can conclude that:

S0 =
{

q| ∂γij

∂βij
= ∂ψij

∂βij
= 0, ∀i, j ∈ N , i 
= j

}

is the largest invariant subset of S. Since
∂γij
∂βij

= ∂ψij
∂βij

= 0 only holds when βij = d2
1 , then the largest

invariant set is the origin and the system will converge to it as t → ∞. This concludes the proof. �

8.2. Proof of Theorem 4.1

From (2.3), one obtain:

d

dθijk
cos(θijk) = K

[
2(θijk − sign(θijk)

π

3
)+ (θjil − sign(θjil)

π

3
)
]

sin(θijk), (8.3a)

d

dθjil
cos(θjil) = K

[
2(θjil − sign(θjil)

π

3
)+ (θijk − sign(θijk)

π

3
)
]

sin(θjil). (8.3b)

Consider Vc as a Lyapunov function candidate defined by:

Vc(q) =
∑
j∈N

∑
i∈Nj,d2

∑
k∈Nj,d2

\{i}

(
θijk − sign(θijk)

π

3

)2
.

It is worth mentioning that for a set of four agents there are two correlated inter-agent angles to be
controlled. The interaction of such angles, sharing one edge, is clearly visible in (8.3). Due to the
geometric constraints that F ′(d1, d2) implies, |θijk| ≥ π/3, ∀j ∈ N , (i, k) ∈ N 2

j,d2
, i 
= k (since in a

isosceles Connected Triplet edges are of length d1). Thus, either π/3 ≤ θijk < π or −π < θijk ≤ −π/3
such that the function Vc(q) is continuous. Then, Vc(q) = (θijk − sign(θijk)

π

3 )
2 + (θjil − sign(θjil)

π

3 )
2.

Retrieving θ̇ijk and θ̇jil from (8.3), we can write:

V̇c(q) = −4K
[
(θijk − sign(θijk)

π

3
)2 + (θjil − sign(θjil)

π

3
)2+ (θijk − sign(θijk)

π

3
)(θjil − sign(θjil)

π

3
)
]

.
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26 G. RODRIGUES DE CAMPOS ET AL.

Since the right hand side of the previous equation is strictly negative, it follows that Vc(q(t)) <
Vc(q(0)) < ∞ for all t ≥ 0, and that |θijk| → |θjil| → π/3, and inherently, all the Complete Triplet’s
edges are equal to d1. This concludes the proof. �

8.3. Proof of Theorem 4.2

Following the same reasoning as before, one can obtain:

d

dθijk
cos(θijk) = K

[
2(θijk − sign(θijk)

π

3
)− (θjil − sign(θjil)

π

3
)− (θjkm − sign(θjkm)

π

3
)
]

sin(θijk),

d

dθjil
cos(θjil) = K

[
2(θjil − sign(θjil)

π

3
)− (θijk − sign(θijk)

π

3
)− (θjkm − sign(θjkm)

π

3
)
]

sin(θjil),

d

dθlji
cos(θlji) = K

[
2(θlji − sign(θlji)

π

3
)− (θijk − sign(θijk)

π

3
)− (θjil − sign(θjil)

π

3
)
]

sin(θlji).

From a geometric point of view, it is obvious that if all agents are sharing the same vertex j, the evolution
on an angle is closely dependent on the others such that:

2π = |θijk| + |θkjl| + |θlji|. (8.4)

Furthermore, if we consider Vc(q) as a Lyapunov function candidate defined by

Vc(q) =
∑
j∈N

∑
i∈Nj,d2

∑
k∈Nj,d2

\{i}

(
|θijk| − π

3

)2
,

its derivative can be expressed as:

V̇c(q) = −4K
[
−(θijk − sign(θijk)

π

3
)(θjil − sign(θjil)

π

3
)

− (θijk − sign(θijk)
π

3
)(θlji − sign(θlji)

π

3
)− (θjil − sign(θjil)

π

3
)(θlji − sign(θlji)

π

3
)

+ (θijk − sign(θijk)
π

3
)2 + (θjil − sign(θjil)

π

3
)2 + (θlji − sign(θlji)

π

3
)2

]
.

(8.5)

Define, for the sake of simplicity of notation, a = (θijk − sign(θijk)
π

3 ), b = (θjil − sign(θjil)
π

3 ) and
c = (θlji − sign(θlji)

π

3 ). The equation (8.5) can be rewritten as:

V̇c(q) = −4K
[
a2 + b2 + c2 − ab − ac − bc

]
.

The partial derivatives of V̇c(q) are given by ∂V̇c(q)
∂a = 2a−b−c, ∂V̇c(q)

∂b = 2b−a−c and ∂V̇c(q)
∂c = 2c−a−b.

This yields that V̇c(q) has an extremum when ∂Vc(q)
∂a = ∂Vc(q)

∂b = ∂Vc(q)
∂c = 0, i.e. when a = b = c. One

can then conclude that V̇c(q) is a strictly negative function with a global maximum equal to zero when
|θijk| = |θkjl| = |θlji| = 2π

3 . This concludes the proof. �
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8.4. Proof of Theorem 4.3

Based on the definition of the set F ′(d1, d2), the distance separating two connected agents is constant
and equal to d1. From equation (2.3), we can compute:

d

dt
cos(θijk) =

[
< q̇ji, qjk > + < qji, q̇jk >

]
‖qji‖ ‖qjk‖ . (8.6)

We can easily obtain:

< qji, qjk
⊥ >= −‖qji‖‖qjk‖ sin(θijk), < qji

⊥, qjk >= ‖qji‖‖qjk‖ sin(θijk).

Considering controller (4.2), (8.6) can be written as:

d

dt
cos(θijk) = 2K

(
θijk − sign(θijk)

π

3

)
sin(θijk).

Finally, for all sin(θijk) 
= 0 we have:

θ̇ijk = −2K
(
θijk − sign(θijk)

π

3

)
.

Note that previous manipulations exclude cases where |θijk| = kπ , since otherwise θijk is an invalid
inter-agent angle According to Assumption 2.1, corresponding to a particular equilibrium offering two
possible trajectories. Consider now the following Lyapunov function candidate:

Vc(q) =
∑
j∈N

∑
i∈Nj,d2

∑
k∈Nj,d2

\{i}

(
θijk − sign(θijk)

π

3

)2
.

Note that for each Connected Triplet, there is only one inter-agent angle to be controlled. Due to
the geometric constraints that F ′(d1, d2) implies, |θijk| ≥ π/3, ∀j ∈ N , (i, k) ∈ N 2

j,d2
, i 
= k (since

in a isosceles Connected Triplet edges are at least of length d1). Thus, either π/3 ≤ θijk < π or
−π < θijk ≤ −π/3, which leads us to a continuous function Vc(q). Its derivative can then be written as:

V̇c(q) = −4K
(
θijk − sign(θijk)

π

3

)2
. (8.7)

Thus, V̇c(q) remains non-positive for all t ≥ 0, so that |θijk| tends to π/3. Based on geometric arguments,
this necessarily means that the third edge’s length tends to d1, and consequently that a Complete Triplet
is eventually formed. This concludes the proof. �

8.5. Proof of Theorem 4.4

From its definition, we have k(|θijk|) > 0 and
∂k(|θijk |)
∂|θijk | ≥ 0. Furthermore, it follows from (4.4) that K(θijk)

value increases as |θijk| → π/3. Therefore, for each Connected Triplet (i, j, k), the smaller θijk’s value is
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28 G. RODRIGUES DE CAMPOS ET AL.

the stronger the contribution of (4.2) will be. Based on simple geometric arguments, it yields that for a
set of four agents in similar formation as in Fig. 7(a) there are three controllable inter-agent angles and
that their sum is equal to 2π . Under the assumption that the initial inter-agent angles are not equal, it
follows that the absolute value of an inter-agent angle will be strictly inferior to all the others’ values
such that, e.g. θijk < θljk < θkjl. Since K(θijk) value increases as |θijk| → π/3, the reader can see in this
approach a priority based strategy. In other words, the force applied to small angles has a higher priority
(higher K(θijk)’s value), while large angles have lower priority (smaller K(θijk)’s value). For the sake
of brevity, the rest of the proof can been obtained from the proof of Theorem 4.2 and will therefore be
omitted. �
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Martínez, S. & Bullo, F. (2006). Optimal sensor placement and motion coordination for target tracking.

Automatica, 42, 661–668.
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