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1 Introduction
The idea of deploying formations of relatively unsophisticated autonomous agents to
accomplish complicated tasks has roots in the early works studying the flocking and
foraging behaviours among birds. The question of interest then was how one can mimic
different behaviours witnessed in populations of birds, animals, insects, etc. among
a population of artificially constructed agents. In 1987 the behaviour of a flock of
birds (boids) in motion was modeled and simulated by Reynolds. The model relied on
assuming local motion strategies for each of the boids; i.e. only local information from
neighbouring boids was used by each individual. Many other works in coming years
followed suit and contributed to our understanding of flocking like behaviours.

However, something that has not gained much attention is that in an ever changing
dynamical environment the agents need to be able to communicate with each other to
improve their adaptability and the overall performance of the group. In the animal
kingdom this may be done via the secretion of pheromones or, in the particular example
of humans, it is done by communicating via Language1.

This work is an endeavour to study the possibility of artificial agents developing
their own Language in the context of exploring their environment. We assume that there
is no global frame of reference and there are certain prominent environmental features
with unknown global positions, beacons or landmarks, such as a communication an-
tenna or an urban landmark, that all the agents can recognise and can assign a label to.
In addition, we assume that these labels are determined locally by each of the agents.
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We are interested in investigating the possibility of agents determining each others po-
sitions via communicating their own position relative to these locally chosen labeled
beacons. To achieve this, it is of course necessary for the agents to agree on the same
name for the landmarks, and in a sense develop a Language of their own.

We formalize the problem of interest and outline a sketch solution in the remain-
der of this abstract.

2 Problem Formulation
Consider a set of n mobile agents indexed in X , {i}ni=1 with global positions xi(t) ∈
R2 at time t ∈ Z≥0 (note that the agents do not know their global positions (or the
global frame) as they have only access only to their own local frame). Agent i can
communicate with another agent j at time t if δij(t) , ‖xi(t) − xj(t)‖ ≤ rd, where
rd, the communication radius, is a positive constant. LetNi , {k | δik(t) ≤ rd} be the
neighbor set of agent i; i.e. agent i can communicate with all j ∈ Ni. Consider also a
set of m environmental features (beacons) B = {bj}mj=1, where bj is the global label of
beacon j unknown to the agents. Each beacon j has a global position bj ∈ R2 unknown
to the agents. The workspace is then divided into several cells such that each beacon
is located in precisely one cell (i.e. no more or no less). We use Cj to denote the cell
associated with bj . Agent i identifies cell Cj by the label bij . We actually assume that
each individual agent i labels each of the beacons j ∈ B locally, i.e. Li , {bij}mj=1,
via a language function (bijection) `i : (B,Z≥0) 7→ Li, i.e. `i(bj , t) = bij . For this
paper, assume the cells are Voronoi cells and the beacons are the generators.

ASSUMPTION 1. It holds that `i(bj , 0) 6= `k(bj , 0), ∀j ∈ {1, . . . ,m} and bj and
bij(0) are uniformly distributed between 0 and b̄ ∈ R. The agents are not equipped with
relative position sensing; i.e. agent i has no access to the position of agent j 6= i. Each
agent measures the range to those generators satisfying rij(t) = ‖xi(t)−bj(t)‖ ≤ rd.

Suppose the agents are tasked with exploring the environment according to some
motion strategy and in doing so they come into contact with each other and share their
position in terms of their local cell identity; e.g. bij . The main problem that we consider
in this work can then be stated at a high-level as follows.

PROBLEM 1. Characterize the requirements on the agent’s motion such that as t→∞
it follows that `i(bj , t) = `k(bj , t), ∀i, k and for all j ∈ {1, . . . ,m} and @(j, l) with
j 6= l such that `i(bj , t) = `i(bl, t). That is, characterize the requirements on the
motion of each agent i such that as t → ∞ the label for each beacon converges to a
common value among all the agents (and no two beacons share the same value).

The consequence (and significance) of achieving `i(bj , t) = `k(bj , t), ∀i, k and
∀j ∈ {1, . . . ,m} is that subsequently each agent can transmit to their neighbours the
identity of the cell they are in and their neighbours will understand the spatial meaning
of this label.

The assumption that `i(bj , 0) 6= `k(bj , 0) is motivated by the fact that in several
applications different types/generations of robots might be present or in many cases
there is no need, desire or ability to pre-program the agents with common beacon labels.



We outline an algorithm to address Problem 1 and follow this by providing a
theorem which characterises the conditions on the agent’s motion such that convergence
occurs.

ALGORITHM 2.1 Exploration and Language Evolution at Agent i

T0 ← 0;
for l ∈ N do
Eji (l + 1)← ∅;
for t ∈ [Tl, Tl+1) do

if Ni = ∅ then
Move agent i according to the motion strategy Si

else
Determine Cj such that xi(t) ∈ Cj by solving j = argminj rij(t)
while rij ≥ ε for some small ε > 0 do

Move towards bj

end while
if Ni 6= ∅ then

Send bij to all k ∈ N b
i , {k | ‖xi − xk‖ ≤ rbi (t)}

Eji (l + 1)← Eji (l + 1) ∪ (i, k), ∀k ∈ N b
i

Receive bkj from all k ∈ N r
i , {k|i ∈ N b

k}
Eji (l + 1)← Eji (l + 1) ∪ (k, i), ∀k ∈ N r

i

Set bij ← 1
|N r

i |+1 [sibij +
∑

k∈N r
i

bkj ]

end if
end if

end for
Ej(l + 1)← ∪iEji (l + 1), ∀j ∈ {1, . . . ,m}

end for

Note that particular Si, ∀i will be discussed in an extended version of this
work but in the following theorem we give a sufficient condition on those Si that
ensure convergence. The distance rbi (t) must satisfy rbi (t) < rd − ε. Finally,
si 6= sj > 0 is a selfishness factor.

THEOREM 1. Consider the scenario described above with Assumption 1 and Algo-
rithm 2. Define Gj(l + 1) as the graph defined by the vertex set X with edge set
Ej(l + 1). Suppose there exists an Si, ∀i such that there exists an infinite sequence
of contiguous, non-empty and bounded time intervals [Tl, Tl+1) such that Gj(l+ 1) for
all l ∈ N and for all j ∈ {1, . . . ,m} is strongly connected. Then as t → ∞ for all
pairs (i, k) it follows that `i(bj , t) = `k(bj , t) for all j ∈ {1, . . . ,m} and @(j, l) with
j 6= l such that `i(bj , t) = `i(bl, t).


