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Abstract— Road safety has been studied for more than 80
years with the objective to prevent traffic accidents, injuries,
and fatalities. Proper road design, standards, traffic rules,
driver education and law enforcement are continuously im-
proved to reduce the crash risk and enable mitigating actions.
While significant advancements have been made, humans still
frequently do mistakes, sometimes with severe consequences.
In this paper we introduce the notion of Precautionary Safety
and propose a methodology such that autonomous vehicles can
adjust their trajectory planning to their capabilities, external
conditions, and knowledge on human mistakes in order to
satisfy overall requirements on accident-, injury- and fatality
rates. More precisely, we describe how to make adjustments
to existing driving policies so to satisfy real-world safety
requirements, rather than only obeying to the law and traffic
rules. As an illustrative example, the methods are applied to
accident scenarios between vehicles and jaywalking pedestrians.

I. INTRODUCTION

Every year, over 1.3 million fatalities are caused by traffic
accidents around the world. To tackle accidents related with
human error or incorrect situation assessment, responsible
for up to 99% of the traffic accidents in the US [1], several
generations of Advanced Driver Assistance Systems (ADAS)
have been developed and deployed in the last few decades,
with remarkable effects on real-world traffic and traffic
related injuries/fatalities. The reader can refer to [2] for a
recent report of the European Commission on intelligent
safety systems and their effects on the reduction of critical
accidents and casualties.

During the last decade, and in particular in the last few
years, the automotive industry is going through structural
transformations powered by new breakthroughs on electri-
fication, connectivity and automation. In particular, recent
advances in perception and compute technologies, as well
as on active safety and advanced cruising features, have led
to high expectations on a rapid development of Autonomous
Driving (AD) systems. But even if human-supervised cruis-
ing features and AD systems can be perceived as very similar,
given that both control the longitudinal and lateral motion
of the vehicle, they present clear differences: while AD
systems are responsible for driving safely, cruising features
only support the driver and rely in his/her supervision and
responsibility. That is, cruising features are designed to do
their best, whereas AD systems are to be designed to operate
only if they can do it safely, without human supervision.
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Fig. 1. Precautionary Safety Driving Policy for Autonomous Driving,
adapting the trajectory planning to the ability to perform evasive maneuvers.

In this paper, we focus on safe trajectory planning and
decision-making for AD, often referred to as a safe driving
policy. Before introducing the proposed driving policy de-
sign methodology, it is important to first discuss the notion of
safety. Some researchers define safe driving as legal safety,
i.e., in the sense that AD systems are considered safe if they
obey to a set of rules at all times [3], [4]. As a starting
point, this is a indeed a fair statement and ambition. After
all, it is easy to draw the conclusion that, if everyone just
followed the rules, there would be no accidents. However, the
underlying assumption that other road users always follow
rules, is questionable. In fact, many people violate traffic
rules, either on purpose or by mistake: driving faster than the
speed limits, getting distracted, taking way when changing
lanes or when driving through intersections. Fortunately, the
infrastructure is built to be resilient to human errors, and
other road users are fairly good at counteracting other’s
mistakes by using a combination of proactive and reactive
actions. It is therefore important to acknowledge that people
do make mistakes and to design AD systems that are resilient
to human errors. Thus, instead of using the legal safety
concept alone, we propose to define safe driving as a low
accident rate with low severity, no matter whose fault is it.

The contribution of this paper is a novel approach for the
design of safe driving policies, summarized in Fig. 1. The
advantages with the proposed methodology are:

• any existing driving policy can be used as a base;
• any emergency maneuver algorithm can be utilized;
• perception capabilities, evasive ability and knowledge

on exposure to risky situations are jointly assessed to
identify how the driving policy needs be adjusted to stay
safe, and/or when it is safe to activate the AD system.



The paper is organized as follows. First, Section II pro-
vides some background and context to this work. Section III
focuses on quantitative safety requirements aspects, while
Section IV describes the novel concept of precautionary
safety (PCS), and how to enforce safety adaptations to
existing driving policies accordingly. Section V discusses
adaptations to jaywalkers, providing a deeper discussion
on the derivation of PCS adaptations and some numerical
examples. Finally, Section VI presents some concluding
remarks and avenues for future research.

II. BACKGROUND

Safety assurance and safe planning is one of the most
challenging tasks in the development of AD systems. In [5],
[6], [7], [8], [9], [10], various formal method techniques are
used for synthesizing decision & control software, where the
software is guaranteed by design to not violate traffic rules
and other safety requirements. However, reduced scalability
and the inability to deal with probabilistic uncertainties and
quantitative requirements are limiting factors for practical
usability of such techniques [11].

In [12], NVIDIA describes its Safety Force Field concept,
as a safety layer for obstacle avoidance which guarantees that
the AD vehicle does not expose other road users to dangerous
behaviors. Similarly, Mobileye has proposed a white-box,
interpretable, mathematical model for safety assurance, de-
noted as Responsibility-Sensitive Safety [3]. Similar methods
are also proposed in [13], [14], which can guarantee that, as
long as other road users act according to certain assumed
behaviors, the AD vehicle will not crash and will mitigate
collisions for unforeseen behaviour of other road-users.

Formal methods are good starting points for establishing
safe driving policies, especially in a world with only AD
vehicles are present, or if all road users always obey to a set
of rules. However, in practice, AD vehicles will always have
to interact with other road users that frequently violate rules.
To begin with, the first AD vehicles will have to interact with
existing human-driven vehicles. A long, co-existence phase
will follow until manually driven vehicles are phased out and,
even if they are completely phased out, AD vehicles would
still have to interact with rule breaking pedestrians/animals.

In addition to obeying traffic rules, AD systems therefore
need to be resilient to the behaviour of human road users.
People are not perfect, and one cannot expect them to avoid
all mistakes, no matter how much we educate them. Instead,
it is important to observe how people behave in the real world
and then ensure that the AD systems adapt their behaviour
to people, and not vice versa. In Fig. 1 the core principles of
the proposed PCS concept are illustrated, showing how the
Driving Policy can be adapted to account for exposure to
external incidents, the perception ability of the AD system,
and its ability to identify and execute emergency maneuvers.

III. QUANTITATIVE RISK NORM

Real-world safety is often described in quantitative num-
bers, e.g., low accident or fatality rates [15], [16]. In order
achieve this, multiple methodologies have been proposed,

Fig. 2. Autonomous Driving (AD) system architecture. The Precautionary
Safety Planning module is added to guide the Nominal Planning module
with additional speed constraints and/or longitudinal/lateral margins in order
to ensure that the Emergency Module is given the prerequisites it needs to
satisfy a given quantitative risk norm. Depending on the design of the AD
system and its original Driving Policy, the Emergency Maneuver module
can optionally be incorporated directly in the Nominal Planning module.

including Waymo’s combination of system-level testing (sim-
ulation, test track and public road) and component and
subsystem testing [17], [18]. Similar proposals are also under
development in industry standards, e.g. the Safety of the
Intended Functionality [19], combined with ISO 26262 [20].

In this paper, as a complement to existing work, we pro-
pose a structured way to adapt AD driving policies to satisfy
quantitative safety requirements. Simply put, AD systems are
proposed to adapt their driving policies to their abilities,
such that they can satisfy any given quantitative safety
requirement, denoted hereafter as Quantitative Risk Norm
(QRN), as introduced in [15]. The QRN can advantageously
be split into QRNs for different accident types and their
severity, to ensure that real-world safety is achieved for all
types of road users, in any given Operational Design Domain.

IV. PRECAUTIONARY SAFETY DRIVING POLICY

This section presents the proposed PCS concept and
design methodology for safe driving policies. A high level
illustration of the functional architecture is provided in Fig. 2.
The main responsibility of decision-making is, apart from
obeying traffic rules, to design and adapt planned trajectories
to the system’s capabilities, external conditions and knowl-
edge on road user mistakes, in order to satisfy the QRN.

A. Advisor/precautionary safety planning:

Nowadays, most ADAS systems are reactive, in the sense
that they only act when hazardous situations are detected.
For example, Automatic Emergency Braking (AEB) systems
can brake if the system judges that an accident is imminent.
Obviously, the performance of such systems depends on how
early they can detect a situation before it is too late. Although
reactive measures can contribute to the safety of AD, it will,
alone, never be sufficient to reach the desired QRN. To cope



with such shortcomings, precautionary measures need be
taken by the decision-making module. For anticipated human
behaviors, precautionary measures are easy to introduce, but
to handle jaywalkers and other unexpected situations there
is a need for combined precautionary and reactive measures.

The core idea behind the PCS module, depicted in Fig. 2,
is to drive with precaution to facilitate collision avoid-
ance/mitigation by emergency maneuvers in case of unex-
pected events. Precautionary measures can be defined as a set
of advisory inputs to the trajectory planner. In particular, a set
of speed constraints and lateral/longitudinal margins can be
provided to the planner to reduce the risk for accidents due to
unexpected events. But the amount of measures taken by the
PCS planner should depend on the ability of the AD system
to detect and react to critical situations, and the prescribed
QRN requirements. Specifically, the AD vehicle’s ability to
detect and react can be categorized into three main sources:

1) perception limitations;
2) planning and prediction limitations;
3) vehicle control limitations.
1) Adaptation to perception limitations: For an AD ve-

hicle with low perception performance, the driving policy
should take more precaution to be able to cope with un-
expected events. Such limitations, e.g., a limited sensing
range/unobserved areas, can impose speed restrictions. More-
over, whenever the AD vehicle has limited ability to detect
and react to certain unexpected events, e.g. moose crossing
the road, there is a need to drive with extra caution on
roads with high exposure to such events, whereas it can
drive faster on roads with low exposure. One key element
of the PCS principles is therefore how to estimate the
impact of perception limitations on the overall performance
of emergency maneuvers, and account for it in the planning
phase. The adaptations can either be made dynamically or
statically, depending on whether the perception performance
can be estimated in real-time or using offline validation.

2) Adaptation to planning and prediction limitations:
Predicting the intent of other road users is not easy, espe-
cially when people make mistakes. Moreover, it would be
impossible to drive if one always assumes that all other
road users will always make the worst mistake possible.
Thus, AD vehicles need to plan trajectories despite their
inherent prediction and planning limitations. However, if
one can estimate how frequently a given driving policy gets
exposed to conflicts due to prediction limitations, and how
well the reactive part of the AD system, i.e. the emergency
maneuvering, would be able to solve such conflicts, then one
can derive additional precautionary measures that need to be
enforced on the driving policy so to satisfy the QRN.

3) Adaptation to platform limitations: Vehicle platform
limitations is another factor that the decision-making mod-
ule should take into account when establishing a driving
policy. Similar as for the perception limitations, vehicle
platform limitations can arise from fundamental limitations,
e.g. limited steering torque or slow response in the brake
systems, or from dynamical limitations, e.g. low friction on
a slippery road. Such limitations are also dependent on the

Fig. 3. Illustration of the proposed methodology for adapting existing
driving policies to reach low accident rates in Operational Design Domains
where autonomous vehicles get exposed to human mistakes (incidents).

planned maneuver by the decision-making module, i.e. an
evasive maneuver requires higher road-tyre friction when
compared to a slow lane-change maneuver, for instance.
Hence, the planning module should know which performance
to expect from the vehicle platform for a given maneuver, at
least in probabilistic terms, in order to ensure that platform
limitations do not lead to a violation of the QRN.

B. Nominal/precautionary planning:

The nominal planner utilizes the surrounding information
from perception and advised inputs from PCS planner to
determine a smooth, comfortable and legal trajectory. For
instance, in a vehicle following scenario in a highway, the
nominal planner should receive information about the road
and surrounding objects, together with advised inputs, such
as the advised time gap, from the PCS planner. It should
then output a trajectory that maintains a sufficiently large
distance to the lead vehicle and does not violate the posted
speed, and ensures that the QRN for rear-end accidents is
satisfied. In other words, an adequate driving policy should
keep sufficient distance to both ensure that it doesn’t collide
with the lead vehicle, and only rarely needs to use hard
braking, in order to minimize the risk of being rear-ended.

C. Emergency/reactive planning:

The emergency or reactive planning module is responsible
to exploit the full capability of vehicle platform to deal with
conflicts and to contribute to the fulfilment of the QRN. This
is similar to how traditional collision avoidance/mitigation
systems, such as AEB, operate, even if AD systems need to
handle many more scenarios than traditional AEB systems.
It is important to highlight that the emergency planning
module is designed to only act in conflict scenarios, whereas
the nominal planning module is responsible for interacting
with other road users in the first place, and is designed to
avoid as many conflicts as possible. For the design of a
PCS driving policy, we therefore propose the ability of the
emergency module to detect and react to unexpected events
to be analysed using simulations and directed testing at test
tracks, and the outcome used to put precautionary constraints
on the nominal planning to ensure that the QRN is satisfied.

D. Deriving PCS constraints - methodology

Leveraging the notion of PCS detailed before, an illus-
tration of the proposed methodology for adapting driving
policies to PCS constraints is given in Fig. 3. Accident
statistics observed from human drivers, and exposure to



incidents using an existing driving policy/manual drive, serve
as a basis to derive the QRN and accident periodicity with
and without PCS adaptations, considering the AD system’s
evasive maneuver performance. In the sequel, the proposed
precautionary safety concept and driving policy derivation
methodology will be applied to an illustrative example
considering jaywalking pedestrians. Note that both lateral
and/or longitudinal adaptations can be considered to increase
evasive performance. For the sake of simplicity, though, we
only discuss speed adaptations in the remainder of this paper.

V. SPEED ADAPTATION TO JAYWALKERS

This section provides an example case to which the pro-
posed Precautionary Safety (PCS) concepts will be applied.
PCS will be used to enforce speed constraints on a driving
policy, considering the capabilities of the reactive part of
the system (subject to perception, planning and actuation
limitations), as well as a numerical Quantitative Risk Norm
(QRN) for pedestrian jaywalkers for different road segments.
It is worth noting, though, that the proposed approach and
methodology can be used for alternative traffic scenarios,
other sources of data, or to enforce lateral motion constraints.

In terms of traffic interactions, we consider here the
EUNCAP Car-to-Pedestrian Nearside Adult (CPNA) certifi-
cation case to illustrate the novel concepts and methodology.
The scenario is represented in Fig. 4a, and corresponds
to a collision situation where an adult pedestrian crosses
the ego vehicle’s path from the nearside, e.g., jaywalking.
The collision point, here identified as α , corresponds to a
percentage value of the ego vehicle’s width at which the
ego vehicle hits the pedestrian, if no collision avoidance
maneuver is attempted. It is defined between 0 and 1, where 0
means that the collision point is the right corner of the front
bumper and 1 the left corner (of the front bumper).

Fig. 4b also illustrates the considered traffic domains,
also called later as Operational Design Domain (ODD): ur-
ban/suburban driving and freeway/highway driving. Different
road segment speeds, defined by posted speed signs or the
typical driving speed in dense traffic conditions, are also
considered ([30−100] km/h). As a representative example of
a complex driving routine, we assume here a routine based
on the two different ODDs corresponding to, for example,
a daily/recurrent office-commuting-residence routine. Note,
though, that more complex routines or different traffic el-
ements/situations can be used, and the numeric elements
proposed in this paper extended to such cases.

A. Quantitative Risk Norms (QRN)

We consider here Quantitative Risk Norms (QRN) as a
safety requirement on AD systems, also referred to in liter-
ature as acceptable safety risk or positive risk balance [21].
One particularly important aspect for defining risk norms
concerns the severity of any potential accident, which for
jaywalkers is shown to be related to the impact speed.
Indeed, for any given road, higher severity of injuries are
correlated with higher impact speeds, due to clear physical
relationships: when the impact speed increases, the amount

TABLE I
QUANTITATIVE RISK NORM (QRN) FOR JAYWALKERS

Impact speed Severity Risk Norm
[km/h] [pedestrian accident] [hours between accidents]
≤ 10 Minor accident 100.000

[10−20] Light injury risk 1.000.000
[20−30] Severe injury risk 10.000.000
[30−40] Low fatality risk 100.000.000
> 40 High fatality risk 1.000.000.000

of energy that is released also increases. While part of
the shock energy will be absorbed by the human body,
the body can only tolerate a limited amount of external
forces. Hence, higher speeds result in more severe injuries
whenever unprotected road users, such as pedestrians and
cyclists, collide with motorized vehicles. According to [22],
pedestrians have a 90% chance of surviving car crashes at
30 km/h or below, but less than a 50% chance of surviving
impacts at 45 km/h or above. Based on such insights, we
have classified in Table I the different type of collisions with
respect to different impact speeds values.

In order to derive representative and meaningful val-
ues for QRNs, we consider here accident statistics from
the Strada1 (Swedish Traffic Accident Data Acquisition)
database, managed by the Swedish Transport Authority. The
Strada database is continuously updated and is based on
information from two sources: i) the police, reporting road
traffic accidents with personal injuries; ii) the healthcare
system, providing information on people who have sought
care for an injury in the road traffic system. According to
the Strada database 2006-2019, every year are reported:

• 1.250 light VRU injuries;
• 500 severe VRU injuries;
• 50 VRU fatalities.

Moreover, and still according to Strada, there has been, on
average, 5 millions registered cars in Sweden. Assuming that
each car operates 100 hours in urban environment per year
and 100 hours in highway environment per year, this leads
to a total of 500 million hours of operation in total per each
of the ODDs. By dividing the number of injuries/fatalities
over the total number of driven hours we obtain:

• 1 light VRU injury per 0.8 million of driven hours;
• 1 severe VRU injury per 2 million of driven hours;
• 1 VRU fatality per 20 millions of driven hours.

For the sake of simplicity, the above metrics assume that the
occurrence of injuries and fatalities are evenly distributed
between urban and non-urban environments, which is obvi-
ously not the case in reality. Hence, more precise datasets
can be used to refine these computations such as, e.g., [23].

Considering that the above detailed metrics correspond
to the average human driving capabilities/failure rate, we
consider in this paper Quantitative Risk Norms (QRN),
prescribed for an AD system, that are considerably superior
to the average human driver capabilities derived before. Such
QRNs, established in terms of hours between accidents, are

1More details on the Strada database:
www.transportstyrelsen.se/sv/vagtrafik/statistik/olycksstatistik/om-strada/



(a) (b)

Fig. 4. Considered accident scenario (a) and operational design domains (b).

given in Table I for different impact speeds. One can see
that the risk norm for low speed collisions, leading to minor
or light injuries, is considerably lower than for high impact
speeds, for which there is a high risk of fatalities.

It is important to highlight that the derivation of pertinent
quantitative risk norms is a vast research field on its own,
and different proposals have been presented in the last few
years, such as, e.g., in [16]. Being the scope and contribution
of this paper broader that the derivation of risk norms topic
itself, the above described method should therefore be taken
only as a (realistic) example, that will be used in the scope of
this paper for the derivation of a driving policy satisfying the
prescribed safety standards expressed in the form of QRN.
The authors envision, however, to detail other derivation
methods in future research.

B. Decision & control reactive performance

To exemplify the proposed methodology described in
Fig. 3, we consider in this paper a reference Autonomous
Braking System (AEB) based on the algorithms presented
in [24]. Such an emergency braking system can be seen as
the emergency planning module of an autonomous system,
as illustrated in Fig. 2.

In order to derive meaningful and comprehensive results,
we have performed a large set of simulations leveraging in-
house developed simulation environments that include real-
istic threat-assessment and decision making algorithms and
simplified sensor models. To derive a large set of simulation
results, different values of the parameters, defining the car-
to-pedestrian scenario illustrated in Fig. 4a, were used such
as, for example, the ego vehicle speed, pedestrian speed as
well as different collision points. Please note that the scope
of this paper is not to propose and discuss new decision &
control methods, but rather to use representative metrics of
emergency systems’ response to design an adaptive driving
policy. Such reactive performance metrics can therefore be
replaced by any other choice of emergency system, and the
remaining of the proposed approach applied to it.

Table II presents the probability of accidents for the
reference AEB system, for Ego Vehicle (EV) speeds up
to 100 km/h and for the different levels of impact speed,
correlated to the severity of the collision as detailed in
Table I. The reactive performance presented here is driven
by two main aspects: i) sensing and perception limitations,
highlighted in blue cells, incorporating non-detections or late
object classifications, for instance; ii) decision & control

limitations and shortcomings, in the white cells, representing
late interventions, inaccurate predictions, inadequate decision
making, or insufficient actuation power, for example. Note,
however, that additional or more refined sources of failure
or uncertainty could also influence the numerical values of
each cell. From Table II one can see that, up to 40 km/h,
almost all collisions are avoided, which seems consistent
with the known range of high efficiency for AEB systems.
For ego vehicle speeds above 50 km/h, the performance of
the reference collision avoidance system deteriorates leading
to occasional low-speed collisions. For ego vehicle’s speed
of 100 km/h, around 50% of the cases can lead to collisions,
some of them at high speed, which can potentially lead to
high fatality risk cases in about 10% of the cases.

C. Exposure to incidents

For safety argumentation purposes, an important aspect to
be taken into consideration is the exposure to risky situations
and incidents. Table III presents the exposure rate for the
considered ODDs and for different road segment speeds.
The values in Table III, expressed in terms of hours between
incidents, correspond to the exposure to situations where the
AD vehicle would need to perform evasive braking and/or
steering action to avoid collisions with jaywalkers on a given
road segment. It can be seen that one is more exposed to
car-to-pedestrian incidents whenever driving in urban envi-
ronments, and particularly in low-speed segments (30 km/h).
The exposure rate to incidents is however assumed to be
considerably lower (i.e., events are more seldom) when
driving in highway segments, considering that many high
speed infrastructures are reserved for vehicles only and
prevent, as much as possible, the presence of pedestrians.

It is worth mentioning that the exposure metrics in Ta-
ble III represent an engineering judgement of the authors,

TABLE II
IMPACT SPEED PROBABILITY WITH JAYWALKERS, GIVEN PERCEPTION

LIMITATIONS (BLUE) AND EVASIVE ABILITY LIMITATIONS (WHITE)

EV speed Impact speed at jaywalker incidents [km/h]
[km/h] ≤ 10 [10-20] [20-30] [30-40] > 40 Avoidance

30 0.01% 0.001% 0.0001% 0.00001% N.A. ∼ 100%
40 0.1% 0.01% 0.001% 0.001% N.A. ∼ 99.9%
50 5% 0.1% 0.01% 0.001% 0.0001% ∼ 94.9%
60 5% 5% 0.1% 0.01% 0.001% ∼ 89.9%
70 10% 5% 5% 0.1% 0.01% ∼ 79.9%
80 10% 10% 5% 5% 0.1% ∼ 69.9%
90 10% 10% 10% 5% 5% 60%

100 10% 10% 10% 10% 10% 50%



TABLE III
INCIDENT EXPOSURE: DEFINED AS EVENTS WHEN EVASIVE BRAKING/STEERING IS NEEDED TO AVOID A COLLISION WITH A JAYWALKER

Avg road segment speed Urban driving Highway driving
[km/h] Segment type [hours between incidents] Segment type [hours between incidents]

30 Low speed road segment 100 Traffic jam 100.000
50 Medium speed road segment 1.000 Dense traffic 1.000.000
70 High speed road segment 10.000 Low density traffic 10.000.000
100 - - Free flow traffic 10.000.000

established for the purpose of this work, but believed to
be realistic. More precise values and information could be
estimated using, e.g., accident databases in combination with
observations from ADAS/AD vehicle fleets. One could also
improve such metrics by considering, for instance, exposure
metrics with respect to weather conditions, geographical
locations or the time of the day. In such cases, the driving
policy derivation detailed later in SectionV-E, can be estab-
lished and adjusted depending on the different parameters.

D. Accident periodicity

The combination of information on the AD system’s
reactive performance and the exposure to incidents yields
a crucial understanding on the accident rates of a given AD
system with and without driving policy adaption, see Fig 3.
The accident periodicity metrics, established in terms of
hours between accidents, are presented in Table V. The
numerical values are computed as:

accident periodicity =
hours between incidents

accident probability
,

where the exposure rates values (i.e., hours between inci-
dents) are retrieved from Table III and the accident prob-
ability (i.e., collision avoidance/reactive performance) from
Table II. Table V is organized as follows. In the vertical
direction, the table is separated in two panels for each of
the considered ODD’s, i.e., urban driving on the left-hand
side and highway driving on the right-hand side, respectively.
In the horizontal direction, the table is separated in four
different panels, each one corresponding to a different road
segment speed, from 30 km/h on the top to 100 km/h on
the bottom. In each sub-panel, the accident periodicity, estab-
lished in hours between accidents, is presented for different
values of ego vehicle speed and for different values of impact
speed. The color map is defined according to the risk norms
given in Table I: i) for the green cells, the accident periodicity
is lower that the established risk norm (for a given impact
speed); ii) for the yellow cells, the accident periodicity is
equal to the established risk norm (for a given impact speed);
iii) for the red cells, the accident periodicity is higher than
the established risk norm, i.e., the risk norm is violated. It
is worth highlighting that, even if some of the periodicity
values seem very strict (i.e., accidents are seldom) whenever
applied to a single vehicle, such values take a completely
different importance for OEMs and fleet operators that sell
or operate hundreds of thousands of vehicles per year.

E. Numerical example - adapting the driving policy

This section illustrates and exemplifies how to derive a
safe driving policy by leveraging the proposed precautionary

safety concepts. Ideally, an AD system is expected to be
able to safely operate within a given environment and up to
the specified road segment speed. Hence, we assume in the
sequel that the vehicle’s default speed policy is to travel at the
road segment speed, and will establish additional adaptations
in the form of maximum PCS driving speeds, subject to the
specified QRNs. We will also discuss in which of the road
segments AD is considered allowed, provided that it satisfies
the prescribed QRNs. Recall that the road segment speed is
considered to be defined by posted speed limits (e.g., speed
sign) or environmental constraints (e.g., traffic jams).

Consider again Table V. For each of the sub-panels, the
maximum safe driving speed (i.e, that satisfies the risk norms
in Table I), is illustrated by the red lines and light gray cells
on the driving speed column.

For urban driving segments, whenever driving in a road
segment where the road segment speed is 30 km/h (left upper
sub-panel), the maximum operating speed is 40 km/h, after
which the QRNs are violated. Indeed, one can see that if
the AD vehicle drive at 50 km/h, for example, the accident
periodicity at all impact speeds is higher that the prescribed
risk norm, leading for example to two minor collisions every
2000 driving hours and to high speed collisions (with a
high risk of fatality) every 10.000.000 driving hours. In
an analog way, whenever driving in a urban environment
where the road segment speed is 50 km/h and 70 km/h
(left middle- and lower sub-panels), the maximum operating
speed, for a AD system with the reactive performance
capabilities detailed in Table II, is 40 km/h and 50 km/h,
respectively. Such an operating speed limit, largely below the
road segment speed in the respective segments, is naturally
an undesirable outcome, which can lead to decreased traffic
flow and ultimately to traffic jams.

For highway segments (right-hand panels), the maximum
operating is 60 km/h, 70 km/h and 80 km/h, all correspond-
ing to higher values than the road segment speed for the
respective road segments. However, the maximum speed is
only 80 km/h for road segments where the road segment
speed is 100 km/h, see the right lower sub-panel.

In order for the prescribed risk norms to be satisfied, a
suitable driving policy/behavior planning needs to be defined
and enforced by the decision & control system. In complex
driving routines such as the one illustrated in Fig. 4b,
covering both urban, suburb, and highway driving, the AD
system should continuously adapt the driving policy for a
given road segment. Considering the operational objective to
operate within a given ODD at the road segment speed, an
overview of the maximum safe driving speed for the different
segments is given in Table IV. Here are also highlighted the



TABLE IV
PCS MAXIMUM SAFE SPEED VS ROAD SEGMENT SPEED AND QRN SATISFACTION TO DECIDE WHERE AD IS ALLOWED

Road segment Urban driving Highway driving
speed (km/h) Segment type AD allowed PCS driving policy Segment type AD allowed PCS driving policy

30 Low speed segment Yes, QRN satisfied Max. speed = 40 km/h Traffic jam Yes, QRN satisfied Max. speed = 60 km/h
50 Medium speed segment No, blocks traffic Max. speed = 40 km/h Dense traffic Yes, QRN satisfied Max. speed = 70 km/h
70 High speed segment No, blocks traffic Max. speed = 50 km/h Low density traffic Yes, QRN satisfied Max. speed = 80 km/h
100 - - Free flow traffic No, blocks traffic Max. speed = 80 km/h

segments for which AD is allowed given the prescribed PCS
driving policy: for road segments where the speed has to be
adjusted below the road segment speed, AD is not allowed
in order to prevent traffic flow blockage by the AD vehicle.

Note that in this example only one of many accident
types was considered, and only the nominal speed of the
AD vehicle was adjusted when operating in different ODDs.
Naturally, the driving policy can in addition be adapted to dy-
namically slow down and/or increase lateral margins to sus-
pected jaywalkers/road users, to further reduce the incident
exposure rate, thus enabling the AD vehicle to operate in a
larger ODD. Nevertheless, performing dynamic adjustments
with respect to suspected jaywalkers and/or when passing
close to obscured areas from where they may appear is out
of scope of the present paper, and will instead be considered
for future work. In addition, performing similar dynamic
adaptations for a dynamic perception- and vehicle control
ability are also worth investigating when driving in various
weather-, road- and traffic conditions.

VI. CONCLUSIONS

This paper proposes a new methodology to adjust existing
driving policies for autonomous driving systems in order
to ensure that challenging requirements, on low accident
rates and low severity, are met. Specifically, we propose
that driving policies shall be adapted with respect to their
ability to detect and react to mistakes by human road
users/external incidents. For that purpose, we have proposed
the novel concept of Precautionary Safety and presented
numerical examples supporting our methodology. By taking
exposure rates to challenging situations into account, rather
than hard limits based on worst case assumptions, the driving
policy can be adapted to satisfy quantitative real-world safety
requirements without becoming overly conservative.

The proposed approach presents two important and strong
points. First, it is a add-on feature that supports the devel-
opment and deployment of safe AD systems, and that can
be used to monitor and improve, over time, the AD driving
policies subject to the evolution of reactive performance
of the emergency functionalities. Second, it incorporates
perception, decision & control reactive performance, and
knowledge on human mistakes, hence making it very mod-
ular and adaptive, and therefore suitable to be deployed and
tuned for different operation domains, traffic interactions and
deployment markets.

Future research should consider more complete driving
policies, establishing adaptive longitudinal and lateral safety
margins in order to increase the availability of unsupervised
autonomous driving while satisfying quantitative risk norms.
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TABLE V
ACCIDENT PERIODICITY FOR THE AD SYSTEM DEFINED ACCORDING TO THE INCIDENT EXPOSURE RATES ESTABLISHED IN TABLE III AND THE

QUANTITATIVE RISK NORMS DEFINED IN TABLE I. AD CAN BE ALLOWED ON ROAD SEGMENTS WHERE THE MAXIMUM SAFE SPEED (RED LINE)
EXCEEDS THE ROAD SEGMENT SPEED (RED CIRCLE), OTHERWISE THE AD VEHICLE WILL BLOCK THE TRAFFIC FLOW TO DRIVE SAFELY.

Accident periodicity
[hours between accidents with jaywalkers]

Urban driving Highway driving

R
oa

d
se

gm
en

t
sp

ee
d:

30
km

/h 100 h between incidents with jaywalkers 100.000 h between incidents with jaywalkers
EV speed (km/h) Impact speed [km/h], periodicity [h] EV speed (km/h) Impact speed [km/h], periodicity [h]

≤ 10 [10-20] [20-30] [30-40] > 40 ≤ 10 [10-20] [20-30] [30-40] > 40
30 106 107 108 109 ∞ 30 109 1010 1011 1012 ∞

40 105 106 107 108 ∞ 40 108 109 1010 1011 ∞

50 2x103 105 106 107 108 50 2x106 108 109 1010 1011

60 2x103 2x103 105 106 107 60 2x106 2x106 108 109 1010

70 103 2x103 2x103 105 106 70 106 2x106 2x106 108 109

80 103 103 2x103 2x103 105 80 106 106 2x106 2x106 108

90 103 103 103 2x103 2x103 90 106 106 106 2x106 2x106

100 103 103 103 103 103 100 106 106 106 106 106

R
oa

d
se

gm
en

t
sp

ee
d:

50
km

/h 1.000 h between incidents with jaywalkers 1.000.000 h between incidents with jaywalkers
EV speed (km/h) Impact speed [km/h], periodicity [h] EV speed (km/h) Impact speed [km/h], periodicity [h]

≤ 10 [10-20] [20-30] [30-40] > 40 ≤ 10 [10-20] [20-30] [30-40] > 40
30 107 108 109 1010 ∞ 30 1010 1011 1012 1013 ∞

40 106 107 108 109 ∞ 40 109 1010 1011 1012 ∞

50 2x104 106 107 108 109 50 2x107 109 1010 1011 1012

60 2x104 2x104 106 107 108 60 2x107 2x107 109 1010 1011

70 104 2x104 2x104 106 107 70 107 2x107 2x107 109 1010

80 104 104 2x104 2x104 106 80 107 107 2x107 2x107 109

90 104 104 104 2x104 2x104 90 107 107 107 2x107 2x107

100 104 104 104 104 104 100 107 107 107 107 107

R
oa

d
se

gm
en

t
sp

ee
d:

70
km

/h 10.000 h between incidents with jaywalkers 10.000.000 h between incidents with jaywalkers
EV speed (km/h) Impact speed [km/h], periodicity [h] EV speed (km/h) Impact speed [km/h], periodicity [h]

≤ 10 [10-20] [20-30] [30-40] > 40 ≤ 10 [10-20] [20-30] [30-40] > 40
30 108 109 1010 1011 ∞ 30 1011 1012 1013 1014 ∞

40 107 108 109 1010 ∞ 40 1010 1011 1012 1013 ∞

50 2x105 107 108 109 1010 50 2x108 1010 1011 1012 1013

60 2x105 2x105 107 108 109 60 2x108 2x108 1010 1011 1012

70 105 2x105 2x105 107 108 70 108 2x108 2x108 1010 1011

80 105 105 2x105 2x105 107 80 108 108 2x108 2x108 1010

90 105 105 105 2x105 2x105 90 108 108 108 2x108 2x108

100 105 105 105 105 105 100 108 108 108 108 108

R
oa

d
se

gm
en

t
sp

ee
d:

10
0

km
/h 10.000.000 h between incidents with jaywalkers

EV speed (km/h) Impact speed [km/h], periodicity [h]
≤ 10 [10-20] [20-30] [30-40] > 40

30 1011 1012 1013 1014 ∞

40 1010 1011 1012 1013 ∞

50 2x108 1010 1011 1012 1013

60 2x108 2x108 1010 1011 1012

70 108 2x108 2x108 1010 1011

80 108 108 2x108 2x108 1010

90 108 108 108 2x108 2x108

100 108 108 108 108 108

Accident periodicity lower than QRN, see Table I
Accident periodicity equal to QRN, see Table I
Accident periodicity higher than QRN, see Table I
Safe driving speed satisfying QRN
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