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Abstract— In this article, a scenario where several vehicles
have to coordinate among them in order to cross a traffic
intersection is considered. In this case, the control problem
relies on the optimization of a cost function while guaranteeing
collision avoidance and the satisfaction of local constraints.

A decentralized solution is proposed where vehicles sequen-
tially solve local optimization problems allowing them to cross,
in a safe way, the intersection. This approach pays a special
attention to how the degrees of freedom that each vehicle
disposes to avoid a potential collision can be quantified and led
to an adequate formalism to the considered problem. In the
proposed strategy, collision avoidance is enforced through local
state constraints at given time instants and agents are assumed
to only communicate the available time to react and the time
stamps at which they expect to be within the intersection.

Simulations results on the efficiency and performance of the
proposed approach are also presented.

I. INTRODUCTION
Self-organized swarming behaviors in biological groups

with distributed individual-to-individual interactions [3], [4],
[14] have become the scientific motivation for studying multi-
agent systems and the inherent coordination mechanisms. Re-
cent surveys on distributed coordination can be found in [13],
[19]. The cooperative strategies observed in the nature might
have different form, structure or scale, but they aim for the
same thing: optimize a task by using all tools available, i.e.,
all the individuals/agents. The fundamental property of the
cooperation among several agents is that the group behavior
is not dictated by one of the individuals. On the contrary, the
behavior results implicitly from the local interactions between
the individuals and their neighbors.

This article focus on cooperative behaviors for autonomous
cars at road intersections. For such scenarios, the advantages of
distributed approaches are apparent: i) Vehicles can coordinate
in order to trade-off their own objectives and a global goal,
while avoiding conflicts; ii) Robustness to failures of single
agents or communication can be guaranteed; iii) The dynami-
cal features of the communication graph such as low data rates,
dropouts or proximity-based communication can be adequately
handled. A recent review of the vast literature on multi -agent
systems can be found in [9], [15], [17], [18].

More precisely, this paper deals with cooperative driving
strategies such that vehicles, equipped with communication
devices, have to exchange information in order to coordinate
and agree on how to cross the intersection without collisions.
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Ideally, by exploiting their communication capabilities, the
vehicles should be able to coordinate in order to, e.g., guarantee
Quality of Service (QoS) requirements, minimize the aggre-
gate fuel-consumption (by, e.g., slowing down a light vehicle
instead of a bus or a heavy truck). We abstract from the (many)
implementation issues and focus on the fundamental aspects of
the underlying decision making problems. The objective is to
provide to each agent/vehicle mechanisms enabling distributed
cooperative decision making leading to a solution that is guar-
anteed to be collision-free.

The collision avoidance problem in formations of au-
tonomous mobile systems is a well studied topic in robotics
and in air traffic management, see e.g., [1], [6] or [16]. The
reader can refer to [12] for an elaborate survey of conflict
resolution approaches. In other works, a command governor
approach is presented in [22] and a navigation functions’s
based methodology studied in [5]. A cooperative collision
warning system, specially useful for aircraft collision avoid-
ance techniques, is introduced in [10] and mixed-integer linear
programming is proposed for multi-vehicle formations with
uncoupled dynamics subject to coupled collision avoidance
constraints in [20] or [21]. However, due to their nature, the
computation effort of the methods presented in the last two
contributions scales exponentially with the size of the problem
and number of vehicles.

In this article, an autonomous control strategy for intersec-
tions where conventional traffic control devices (stop signs or
traffic lights) have been removed is presented. An illustration of
studied scenario is shown in Figure 1. Recent work on this topic
can be found in [7], [8], where authors present experimental
results for an active control system helping drivers to avoid col-
lisions, or in [11] where provably safe scheduling algorithms
for intelligent intersections are introduced. In the last work,
the proposed solution is based on the interaction between cars
and the intersection infrastructure, utilizing time-slot assign-
ment established by the intersection infrastructure itself. They
propose a hybrid architecture with an appropriate interplay
between centralized calculations and distributed coordination,
assuming that each car has an infinite horizon contingency plan
which is updated at each sampling instant and distributed by the
cars. Other works in this topic consider dynamic programming
or even game-theoretic approaches applied to hybrid systems,
as presented in [23], [24].

The rest of this paper is organized as follows. Section II
presents the considered problem while Section III includes the
proposed control strategy. Simulation results are provided in
Section IV and final conclusions and perspectives for future
research are given in Section V.
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Fig. 1. Illustration of a traffic intersection scenario.

II. PROBLEM DESCRIPTION
Collision Avoidance (CA) in intersection crossing scenarios

is a complex problem. A major challenge in the design of
CA strategies is that safety involves ensuring collision avoid-
ance not only prior to entering the intersection but within
the intersection itself and, consequently, also upon exiting the
intersection.

We assume a scenario including autonomous vehicles ap-
proaching a traffic junction, as shown in Figure 1. Note that the
vehicles and all their variables are indexed to distinguish them.
Moreover, each agent is assumed to be assigned to a driving
task such that the following assumption holds.

Assumption 1: For each agent i, it is assumed that:
• the initial and final destinations corresponding to the

driving tasks of all vehicles are known;
• the path leading a vehicle to its destination from its current

position is assigned by its driving task and it is known;
• the vehicles do not change the assigned path once they

enter the intersection.

It follows from the assumption that the generation of the
driving paths is out of the scope of this paper. In particular,
the vehicle steering is assumed to be controlled by a low
level controller in order to follow a desired path. Similarly, the
vehicles longitudinal velocities along the path are assumed to
be regulated to a desired value by a low level controller. On the
other hand, the desired longitudinal velocity for each vehicle is
the result of the distributed agreement procedure, which is the
topic of this article. Furthermore, we assume that at time zero
all agents are before the intersection and that the intersection
crossing problem has a feasible solution.

Under Assumption 1, the original problem can be consid-
erably simplified. However, it is far from being trivial and, to
the best of authors’ knowledge, they are not too many efficient
solutions to this problem.

Some preliminary results on the design of distributed agree-
ment strategies are presented in this work. The formal stability
analysis and robustness of the proposed approach with respect

to uncertainties in sensing and communication, e.g., noisy
information and lost packets, will be considered in future
research. The formalism used in the sequel is similar to the one
presented in [8], which led to an useful and elegant collision
model as a set of the vehicles configurations on their respective
paths.

A. Vehicle modeling
Consider a set of N agents. Let xi = [pi vi]

T ∈ Xi denote
the state of each vehicle i ∈ N , where pi ∈ Pi and vi ∈
Vi are its position and velocity, respectively. Note that Xi =
Pi × Vi denote the state space, where Pi represents the set of
all possible longitudinal positions along the path and Vi the
set of all possible longitudinal velocities. Denote also k as the
sampling instants and M the prediction horizon such that k =
{1, . . . ,M}. Each agent is modeled as a discrete time double
integrator. In a state-space form, the agent’s dynamics can be
described as follows:

xi (k + 1) = A xi(k) + B ui(k), (1a)
yi(k) = C xi(k), (1b)

where ui(k) denotes the control input, xi(k) = [pi(k) vi(k)]T

and

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
.

Note that, as a part of the assigned driving task, each agent i
has a given reference (desired) velocity denoted by vdi ∈ Vi,
which is assumed to be constant over the all horizon. Define
now: 

xM
i = [xi(0)T , · · · , xi(M)T ]

yMi = [yi(0)T , . . . , yi(M)T ]
uM
i = [ui(0)T , · · · , ui(M)T ]

vMdi = [vdi(0), · · · , vdi(M)]

(2)

as the trajectory, the output, the input and the desired velocity
sequence over a prediction horizon M , respectively. Further-
more, denote by:

x = [xT
i , . . . , x

T
N ]T

y = [yTi , . . . , y
T
N ]T

u = [uT
i , · · · , uT

N ]T

vd = [vdi, . . . , vdN ]T

(3)

the state, the input, the output and the desired velocity vector
of the global system composed of N agents, respectively.

B. Requirements and constraints
In realistic scenarios, several constraints such as bounded

velocities, actuator limitations or time conditions such as min-
imum traveling time need to be handled. This section presents
the considered constraints.

• Actuators limitations: To ensure that the control input is
within the admissible actuator range (trust and brake), the
following constraints are taken into account:

umin
i ≤ ui(k) ≤ umax

i , ∀k ≥ 0. (4)

For the sake of thoroughness of the notation, all inputs
satisfying the previous condition are considered to belong
to the set Ui.



• Position and velocity ranges: To ensure that vehicles
operate within the feasible position range (set by the user
or constrained by the environment) and within the desired
velocity range (corresponding to, e.g., the traffic rules),
the vehicles’ state variables are constrained such that:

[
0

vmin
i

]
≤ xi(k) ≤

[
pmax
i

vmax
i

]
, ∀k ≥ 0, (5)

where pmax
i is the maximum allowed position and vmin

i

and vmax
i are constants defining the allowed velocity

range.

• Safety: In this work, the proposed collision avoidance
solution relies on the design a controller that prevents
the system of reaching a given configuration. Let us
define, for each agent i, the critical set Cri as the set
of all displacements along the path leading to a potential
collision. Thus, it follows:

Cri = { xi ∈ Xi| pi ∈ [Li, Hi], ∀ vi ∈ Vi } , (6)

where Li < Hi are bounds on the position along the path
of vehicle i defining, in a general way, the intersection.
Note that these parameters depend on the physical system
and its geometry. If at time k a point of the trajectory of
agent i satisfies pi(k) < Li, we will generally say that
agent i is “before” the critical set, while if a point satisfies
pi(k) > Hi we will say that the agent is “after” the
critical set. See Figure 2 for an illustration. Define now:

tci = {k| xi(k) ∈ Cri, i ∈ N}, (7)

as the set including all times instants for which the i-th
agent’s state lies within its critical set. Thus, it follows
that the safety requirements with respect to collision
avoidance can be written as:

tci ∩ tcj = ∅,∀ i, j ∈ N, j 6= i. (8)

The previous condition can also be rewritten in the form
of state constraints such as:

xi(k) /∈ Cri,∀k ∈ tcj ,∀i ∈ N, ∀j 6= i. (9)

Note that the previous expression ensures that two agents
are not within the intersection at the same times instants,
therefore satisfying (8).

Remark 1: The used formalism and previous definitions
are similar to the ones presented in [8] or more recently in
[7]. However, it is important to point out that the nature
of the set Cri is considerably different from the bad
set defined in [8]. More precisely, [8] defines the bad
set for the global state space of the system, therefore
gathering information of all agents. Under such formal-
ism, it follows that this set corresponds in fact to an
effective collision. However, such formulation is not, in
the authors’ opinion, the more convenient to formulate the
distributed collision avoidance problem considered in this
paper. Here, the critical set Cri is defined by each agent’s

local information and can be represented in its individual
state space. Thus, the critical set Cri only corresponds
to a potential collision (a dangerous configuration) and
a collision will only occur if at least the states of two
agents lie within their respective critical set at a same time
instant. Note, though, that an equivalent of [8]’s bad set
can be easily found if one merges the information of the
several Cri,∀i ∈ N .

C. Attraction sets and time to react

Crossing a traffic intersection can bee seen as a special case
of a scheduling problem, where the access order to a shared
resource needs to be computed. See Figure 1. In this type of
scenarios, it is possible to find a set of initial conditions that
will lead to an unavoidable collision. Obviously, such cases are
out of the scope of collision avoidance strategies. However, in
every other situation, one of the major challenges is to quantify
the individual degree of freedom of each agent. For example, it
is possible that agent i, once it detects a possible collision with
another agent, is unable to control its future trajectory in such
a way that it can influence the time instants k ∈ tci at which it
will reach the intersection (represented here by its critical set).
Based on such an argument, we are interested in determining if
exists a trajectory leading a vehicle to the critical set in a finite
number of steps, under any feasible control input. Thus, we
introduce here the notion of attraction set, denoted byAi,∀i ∈
N . Using reachability analysis tools, the setAi is defined as the
dual of one-step reachable set and is given as:

Ai(Cri) = Pre(Cri, Ui) (10)
= {xi(k) ∈ Xi : xi(k + 1) ∈ Cri,∀ ui ∈ Ui} .

In other words, the set Ai includes all possible state config-
urations that will lead the agent, unavoidably, to its critical set
Cri in one step. The reader can refer to [2] for further details
on reachability/controllability analysis. In a general way, define
now:

Ai(T ) = Pre(T , Ui)

= {xi(k) ∈ Xi : xi(k + 1) ∈ T ,∀ ui ∈ Ui} .

where T is usually referred to as the target set. Denote Ai1 =
Ai(Cri). By performing backward sequential calculations, it
is possible to compute the set Az

i including all the attraction
sets that will drive vehicle i to Cri in at most z steps such that:

Az
i = [Ai1,Ai2, · · · ,Aiz], (11)

where Aip = Ai( Ai(p−1)). Note that the scalar z is not
a chosen parameter but it rather depends on the structure of
the problem. In other words, z is the largest scalar before the
backward reachability calculations result in an empty set.

Denote now k̃cj = minj∈N{tcj}. If no control input is
applied (uM

i = 0), the Time to React (∆TR
i ) can be given as:

∆TR
i = (k̃cj − z)− t0, z ≥ t, ∀i ∈ N.

In other words, the previous expression corresponds to the time
interval between the time t0 (when the coordination procedure
starts) and the instant when agent i will enter the setAz

i . Thus,
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Fig. 2. Illustration of the attraction sets Az
i and the critical set Cri.

it follows that the agent’s state will enter, unavoidably, into Cri
in ∆attraction

i steps such that:

∆attraction
i = ∆TR

i + z.

For the sake of clearness, an illustrative schema is presented
in Figure 2.

III. CONTROL STRATEGY
This section presents the formal control problem of collision

avoidance at traffic intersections and is divided in two parts.
In the first part, we formalize the centralized problem while
on a second part a sequential decentralized approach and the
necessary decision order criteria are presented. It is important
to recall here that due to the nature of the problem, most of the
centralized solutions for this problem consider mixed-integer
constraints as, e.g., in [20], [21], for which the solution com-
putation effort scales exponentially with the time horizon and
number of vehicles. Therefore, the objective of the proposed
approach is to provide a lower complexity solution, even if the
result is assumed to be suboptimal.

A. Centralized strategy
Assume that the state can be measured at every sampling

instant k. The formal open-loop optimization problem to be
solved in a centralized way can be written as:

min
uM ,xM

M−1∑
k=0

‖v(k)− vd‖2Q + ‖u(k)‖2R, (12)

subject to
(1), (4), (5) and (9),∀i,

where R � 0 and Q � 0 are weighting matrices of appropriate
dimensions penalizing the control signal and any deviation of
the agent’s speed from the desired value, respectively. More-
over, uM = [uM

i
T
, · · · , uM

N
T

]T and x = [xM
i

T
, . . . , xM

N
T

]T

are the input and state sequence over the finite-time horizon M
and their definition follows directly from equations (2) and (3).

Though the major challenge is to avoid collision among
vehicles, one can consider several metrics to evaluate the per-
formance of the system rather than the cost presented in (12).
For example, one could aim to minimize the aggregate fuel
consumption or alternatively the traveling time till destination.

B. Decentralized strategy

We propose in the sequel a decentralized solution where
vehicles sequentially solve local optimization problems allow-
ing them to cross, in a safe way, the intersection. Therefore,
there are two important points to be described. The first cor-
responds to the decision order to be defined with respect to a
given criteria. The second corresponds to the control problem
itself, where collision avoidance is enforced through local state
constraints at given time instants.

1) Decision order: It follows from (6) and (11) that both
Cri and Az

i are time invariant, therefore offering precious
information regarding the individual degree of freedom of
each agent. Such information will be used in our protocol
to establish cooperation among agents. More precisely, we
propose a control scheduling instead of a crossing scheduling,
where vehicles solve their optimization problem sequentially.
Note that such strategy does not guarantee the order in which
agents should cross the intersection, as it would happen in a
crossing scheduling problem. Thus, our approach can be seen
as a priority rule, giving to the first agent in the sequence
the advantage of keeping its desired motion profile, i.e., the
optimal solution that minimizes its own cost function. Then,
this vehicle will broadcast the time stamps at which it expects
to be within the intersection and that will be used to enforce
constraint (9) for the second agent’s optimization problems.
This will proceed until all N vehicles have computed their
solution.

One can reasonably argue that such a sequential policy offers
a high advantage to the vehicles with high priority (i.e. the
first few to decide) over the remaining agents, who might have
to do much larger maneuvers to avoid collisions. In order to
compensate such behavior, and also to introduce some logical
fairness in the protocol, the control priority in this work is
defined in a proportionally inverse way with respect to the
values of ∆TR

i ,∀i ∈ N . In other words, priority will be given
to the agent which lies closer to its attraction set, i.e., the agent
with the lowest ∆TR

i value, then to the agent with the second
smallest ∆TR

i and so on. Such policy is motivated by the fact
that the agent with the lower ∆TR

i has, among all vehicles, the
lowest individual degree of freedom. Thus, it is the authors’
opinion that in this case such policy compensates the draw-
backs of sequential approaches and seems to incorporate what
would happen in real traffic situations.

2) Convex optimization problems: This section shows how
the centralized problem can be decentralized using state con-
straints to enforce collision avoidance not only at the sampling
instants but also at instants between them. The decentralized
problems can be presented as follows:

min
uM
i ,xM

i

M−1∑
k=0

‖vi(k)− vdi‖2Qi
+ ‖ui(k)‖2Ri, (13)

subject to
(1), (4) and (5)

and pi(k̄
c
j + 1) < Li, ∀j 6= i.



and

min
uM
i ,xM

i

M−1∑
k=0

‖vi(k)− vdi‖2Q + ‖ui(k)‖2R, (14)

subject to
(1), (4) and (5)

and pi(k̃cj − 1) > Hi, ∀j 6= i.

where k̄cj = maxj∈N{tcj} and k̃cj = minj∈N{tcj},∀j 6= i.
The solutions and costs of problems (13) and (14) are denoted
u∗i1, C1, u∗i2 and C2, respectively. The initial strategy is now
divided in two sub problems. For a given set of collision times
tcj , problem (13) provides the control sequence u∗i1 such that
agent i is “before” its critical set when k = k̄cj + 1, and will
therefore cross the intersection after agent j. On the other hand,
the second problem guarantees that agent i is “after” its critical
at time k = k̃cj + 1, therefore guaranteeing that agent i has
already crossed the intersection when agent j will cross it.
Therefore, each agent is expected to solve two low complexity
problems and chose afterwards the solution associated with the
lowest cost. The structure of the proposed solution is defined
in Algorithm 1.

Algorithm 1 Convex Sequential Optimization
Calculate ∀i ∈ N :

xM
i = [xi(k), · · · , xi(M)]T , k = {1, · · · ,M},

with uM
i = 0.

if NO COLLISION (tci ∩ tcj = ∅, ∀ i, j ∈ N, j 6= i.)
return

end if

if COLLISION

◦ Broadcast ∆TR
i , ∀i ∈ N

◦ Locally compare all ∆TR
i and establish control priority.

◦ Perform sequentially:

- For the agent with the smallest ∆TR
i :

• Calculate future trajectory with uM
i = 0.

• Broadcast all new tci .

- For the agent with the 2nd smallest ∆TR
i :

• Solve problem (13) and compute u∗
i1.

• Solve problem (14) and compute u∗
i2.

• Compare the costs C1 and C2 associated
with u∗

i1 and u∗
i2.

• Calculate future trajectory with
uM
i = u∗

i1 if C1 < C2 or with
uM
i = u∗

i2 otherwise.
• Broadcast all new tci .

...

- For the agent with Nth smallest ∆TR
i :

• Solve problem (13) and compute u∗
i1.

• Solve problem (14) and compute u∗
i2.

• Calculate future trajectory with
uM
i = u∗

i1 if C1 < C2 or with
uM
i = u∗

i2 otherwise.

◦ Apply control sequences.

end if

Remark 2: In the proposed approach, and mainly due to
its formulation, the complexity of the convex sub-problems
does not increase with respect to the number of agents, since

Initial position Li Hi tci ∆TR
i

Agent 1 (10, 6.25) 55 65 8 6
Agent 2 (45, 4) 75 80 8 7
Agent 3 (7, 11.5) 102 112 9 8

TABLE I
SIMULATION SETTINGS AND PARAMETERS

collision avoidance is enforced by local state constraints at
given time stamps.

The proposed algorithm is defined as an open-loop con-
strained optimal control solution, where the problem is solved
in one calculation instant. However, the authors are now work-
ing on a receding horizon procedure using similar priority
assessment policies.

IV. SIMULATION RESULTS
In this section, we present simulation results illustrating the

performances of the proposed control strategy. We will con-
sider a system of three vehicles (N = 3), mentioned through-
out the sequel as vehicle/agent 1, 2 and 3. The simulation set-
tings are summarized in Table I and a graphical representation
of the intersection scenario is presented in Figure 1. For each
agent, the initial position is given by xi(0) = [pi(0) vdi]

T and
the finite time horizon has been set to M = 14. Moreover,
agents are supposed to be identical with respect to the cost
functions and control constraints such that −2 < ui < 2,∀i ∈
N . If no collision avoidance procedures are implemented, i.e.,
if all agents respect their pre-defined trajectory, the collision
between agent 1 and 2 will occur at k = 8, as stated in Table I.
Moreover, accordingly to the scheduling criteria presented in
previous sections and the different values of ∆TR

i , the opti-
mization order to this problem is: agent 1, 2 and 3.

Figure 3 presents the trajectories of the different vehicles
accordingly to Algorithm 1. In all figures, the red set corre-
sponds to the critical set Cri, while the green sets represent
Az

i . The black dots represent the state of each agent at different
discrete time instants k, also presented in black. Note that Cri
and Az

i are time-invariant and represent a potential collision
and the vehicle’s ability to avoid it, respectively. Furthermore,
recall that an effective collision occurs if at least the state of
two agents lie within their respective critical set at a same
time k. The reader can easily observe that collision avoidance
constraints is now completely satisfied at all sampling times as
well as between sampling instants. In particular, one can see
that agent 1 keeps its desired speed, crossing the intersection
at 7 < t < 9. Based on these information, agent 2 solved
problems (13) and (14) and implemented its optimal solution
such that it crosses the intersection at 6 < t < 7, i.e.,
before agent 1. Finally, agent 3 crosses the intersection at
9 < t < 10, i.e, after agent 1 and 2. Note that, as previously
mentioned, the chosen control scheduling does not determine
the real crossing order. In fact, the optimization problems are
solved sequentially by agent 1, 2 and 3, while at the end the
intersection is firstly crossed by agent 2, followed by agent 1
and 3.
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Fig. 3. Simulation results for a three vehicle system accordingly to
Algorithm 1. In all figures, the red set corresponds to the critical set Cri,
while the green sets represent Az

i . The black dots represent the state of
each agent at different discrete time instants k, also presented in black.

These simulation results clearly show the efficiency and per-
formance of the proposed approach. Furthermore, and in order
to evaluate its practical efficiency, an experimental platform
using real vehicles and real intersection scenarios is under
preparation.

V. CONCLUSIONS AND PERSPECTIVES

In this article, we presented a cooperative driving strategy
for intersection crossing, paying a special attention to how
the degrees of freedom that each agent disposes to avoid a
collision can be quantified. Firstly, we proposed a formalism
allowing to represent, in the state space of each agent, not
only a possible collision but also its individual ability to avoid
possible conflicts. On a second step, we formally presented the
centralized and a sequential decentralized problem. Using the
new formalism, the order of the sequential approach is defined
based on the attraction sets of each agent, which correspond
to its degree of freedom in case of conflict resolution proce-
dures. The proposed solution offers several advantages such
as its low complexity and scalability. In fact, its complexity
with respect to the number of agents remains constant since
collision avoidance is enforced through local state constraints
at given time instants. To complement these results that mainly
consider feasibility conditions, future research should consider
optimality arguments and formal analysis.
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