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Abstract— Road intersections are among the most complex
and accident-prone elements of modern traffic networks. Thus,
new safety systems have to cope with highly complex traffic sce-
narios where the behavior of the different road users is difficult
to predict. Sensing the surrounding environment and assessing
possible threats therefore remain challenging problems. This
paper provides a novel, efficient active-safety system for frontal
collisions detection and prevention/mitigation. More precisely,
we provide: (i) a probabilistic motion prediction algorithm
based on an unscented Kalman filter; (ii) a probabilistic threat
assessment method based on vectors defined by reference
points on the vehicles’ structure; (iii) a reachability-based
decision-making protocol enabling an emergency intervention.
Simulation results, based on realistic data obtained specifically
for this scenario, are also presented showing the efficiency and
the potential of the proposed solution.

I. INTRODUCTION

Traffic control at intersections is a particularly challenging
problem for new intelligent transportation systems. Indeed,
road intersections are among the most complex and accident-
prone elements of modern traffic networks, accounting for 43%
of the total injury causing accidents and 21% of the vehicle
related fatalities in Europe [1]. Moreover, recent numbers
indicate that a majority of the accidents at intersections are
caused by drivers’ errors [2], often as a result of misinter-
pretation of a situation, inattention or the disregard of traffic
rules. Therefore, new Advanced Driver Assistance Systems
(ADAS) have to cope with highly complex traffic scenarios,
as urban intersections with many lanes, where the behavior of
the different road users is hardly predictable. In such scenarios,
sensing the surrounding environment and assessing possible
threats are challenging problems. Several recent works focused
on these problems. In [3], an approach for situation analysis
is provided, based on motion predictions and using object-
oriented Bayesian networks to infer the probability of collision
with all surrounding vehicles, and where traffic rules, the digital
street map and the sensors’ uncertainties are also considered. A
map-based long term motion prediction is also proposed in [4],
based on a stochastic filter able to determine the set of reason-
able future trajectories for all detected vehicles in the current
traffic situation. In this algorithm, where additional information
from a digital map is used, the traffic lanes are represented
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by their corresponding centerlines where each detected vehicle
is projected. Unlike most approaches in the literature, [5]
presents a solution not based on trajectory prediction. Instead,
dangerous situations are identified by comparing what drivers
intend to do with what they are expected to do.

In this work, we will focus our attention on frontal col-
lision scenarios, as depicted in Fig. 1. The underlying es-
timation/control problem is therefore divided in three main
parts: motion prediction, threat assessment, and vehicle control.
There are a number of interesting works on motion prediction
available on the literature. Among many others, a predicting
method for vehicle movements using Monte Carlo sampling is
provided in [6]. Similarly, [7] uses Markov Chains to derive a
probabilistic danger map of moving obstacles. More recently,
[4] uses an Extended Kalman Filter together with digital map
information for path predictions. On the other hand, collision
detection and threat assessment algorithms assuming vehicle-
to-vehicle communication have been studied in [3], [8], [9] and
a polygon-based approach proposed in [9], [10] for identifying
a potential threat and the collision interval. However, none of
the aforementioned papers defines or provides a formal method
in a probabilistic setting. Finally, several control approaches
tried to incorporate the so called “point of no return”, i.e.,
configurations from which a collision cannot be avoided. Two
interesting algorithms are presented in [11] and [12], for ex-
ample. Other works have approached this same problem using
reachability analysis [13]. For instance, [14], [15] focus on
autonomous negotiation algorithms for traffic intersections.

This paper proposes an active-safety system for frontal colli-
sions detection and prevention/mitigation targeting the follow-
ing objectives: (i) Design of a probabilistic path prediction of
the surrounding vehicles; (ii) Develop an efficient probabilistic
collision detection algorithm; (iii) Assess, in a formal and
robust way, the necessity of an intervention; (iv) Overtake
the driver if considered necessary. Considering the previous
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Fig. 1. Illustration of the proposed probabilistic approach. In this image, the
ego vehicle corresponds to the red car, while the other vehicle is presented
in blue. Furthermore, the probability densities (blue and red clouds) concern
the vehicles’ front bumpers at different time steps.
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Fig. 2. An illustration of the different problems tackled by the proposed
solution: P1.- predict the positions of the oncoming traffic ; P2.- assess a
collision threat; P3.- trigger an intervention at an appropriate moment.

problems, the contributions of this work are threefold: (i) a
probabilistic motion prediction algorithm based on an Un-
scented Kalman filter (UKF); (ii) a formal calculation method
of the collision probability based on a Euclidean vector space
defined by reference points on the vehicles’ structure; (iii)
a reachability-based decision-making protocol regarding the
necessity of an intervention.

II. PROBLEM DESCRIPTION

Consider the scenario depicted in Fig. 1. For the sake of the
scenario simplicity, we assume that the ego (red) vehicle is
not turning. Note that the vehicles travelling on the opposite
direction will be called throughout the rest of the article as
the “other vehicle”, and the corresponding variables denoted
with the superscript (̄.). The proposed solution is on-board
sensor-based. Therefore, the considered scenarios assume that
vehicles are in line of sight with respect to a given sensor
such as, for example, a radar. Furthermore, we assume that the
ego vehicle is equipped with the proposed Collision Avoidance
(CA) system. There are three problems to be solved:

• P1. Predict the evolution of oncoming vehicles, given a
dynamical model describing their motion;

• P2. Evaluate the probability of a collision;
• P3. Intervene, as late as possible, in order to avoid or

mitigate a collision.
An illustration of the different problems to be tackled by the
proposed safety strategy is presented in Fig. 2.

Remark 1: Though the motion of the ego vehicle is assumed
here to follow a straight path, the extension to turning ma-
neuvers simply requires an appropriate modeling of the other
vehicle’s motion with respect to a rotating reference frame.

III. VEHICLE MODEL

In this work, we consider that the motion of both cars obeys
to a traditional unicycle model with constant turn rate and
acceleration (CTRA), i.e., assuming that a driver will most
likely drive with a constant turn rate and acceleration [16].
Furthermore, the accelerations in the lateral and longitudinal
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Fig. 3. Illustration of the considered scenario: the reference frame is
positioned at the current position of the front bumper of the ego vehicle.

directions are separately constrained as in [6]. We assume
the origin of the coordinate frame to be the ego vehicle’s
sensor position (the middle point of the front bumper), and
that predictions are made with respect to the front bumper of
the different cars. We consider that the ego vehicle is equipped
with inertial sensors that measure its own speed, acceleration
and yaw rate. Moreover, the range R, the azimuth angle φ,
and the speed, yaw angle and length of the other vehicle are
also considered to be measured. An illustration of the sensing
convention is provided in Fig. 3.

Let k denote the time step and let (.)k represent the value
of a variable at time k. Let ω1, ω2 be two control parameters
such that ω1, ω2 ∈ {−1, 1}. More precisely, the two different
values of ω1 and ω2 define if the vehicle is going forward or
backwards or if the car is turning right or left, respectively. The
considered dynamical vehicle model1 is given as follows:

ẋ = v sin(θ), (1a)
ẏ = v cos(θ), (1b)

v̇ =

{
ω1af , if v ≤ vlong,

ω1
κ/v+αf

2 +
κ/v−αf

2 , if v > vlong,
(1c)

θ̇ =

{
v sin(θmaxω2)/l, if v ≤ vlat,

afω2/v, if v > vlat,
(1d)

where (x, y) is the position, v the velocity and θ the heading
angle. Furthermore, the maximum acceleration due to the road
friction is denoted as af , θmax is the maximum steering angle,
l is the wheelbase and κ is a parameter describing the engine
power. Moreover, vlong and vlat are the breakpoint velocities
at which the limit of the longitudinal acceleration switches
from tyre-to-road friction to engine power and from maximum
steering angle to tyre-to-road friction, respectively. Note that
the velocity of the different vehicles is assumed to be bounded
such that 0 ≤ vk ≤ vmax, where vmax is taken to be 50 km/h
for an urban area.

For the clearness of notation, define χk =[
xk yk vk v̇k θk θ̇k

]T
as the ego vehicle’s state vector, where

v̇ and θ̇ denote the acceleration and yaw rate, respectively. We
can then establish:

χk+1 = f(χk, uk), (2)
where f represents the unicycle model described in equa-
tion (1) and uk =

[
v̇k θk

]T
denotes the control input function

given by the longitudinal acceleration and yaw rate, respec-
tively. Furthermore, the measured states γ are defined as γk =

Hχk + Wk = Hχk +
[
0 0 σv σv̇ σθ σθ̇

]T
, where H is the

observation matrix and σv , σv̇ , σθ, σθ̇ denote the measurement
noise on the speed, acceleration, yaw angle and yaw rate,
respectively.

Define χ̄ as the state vector of the other vehicle, defined by
augmenting χ with the position of the rear bumper. Thus, it
follows:

χ̄k+1 = f(χ̄k, ūk), (3)
where χ̄k, ūk and γ̄k = H̄(χ̄k)χ̄k + W̄k are defined as for the
ego vehicle. Note that H̄(χ̄k) is a nonlinear equation.

1Accordingly to [6], a typical car is defined by the following parameters:
size = 1, 8×4, 8 m , l = 2, 4 m, af = 9, 1 m.s−2, κ = 66, 6 m2.s−3,
vlat = 6, 76 m/s, vlong = 7, 32 m/s and θmax = 0.5 rad. Note,
however, that in this work we consider af = 8.5 m.s−2 as the maximum
deceleration, a value obtained for our 2010’s Volvo S60 T6 test vehicle.
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Fig. 4. A frontal collision scenario: illustration of the important parameters
for collision avoidance systems, i.e., the predicted distance to collision d̂c,
time to collision t̂c and collision time interval ∆̂tc.

IV. MOTION PREDICTION

The path prediction algorithm proposed here is based on
an Unscented Kalman Filter (UKF) subject to non-additive
process noise. To the best of the authors knowledge, an UKF-
based solution has not been considered so far in literature for
this type of scenario. This choice is motivated by the need of
accurately propagating the probability distributions throughout
the safety system. Further details on a UKF and its advantages
are provided in [17]–[19].

Regarding the ego vehicle (and identically for the other
vehicle), the UKF consists of two alternating steps: (i) a-priori
estimation using a motion model to generate the ego’s (or
the other vehicle’s) states at future time steps; (ii) a-posteriori
estimation filtering out the measurements noise in order to
refine the states calculated at step (i).

• A-priori estimation: Consider the dynamical model (2).
Denote the input by ũk = uk+w̃k where w̃k ∼ N(0, Qk)
and the process noise is captured by the covariance matrix
Qk =

[
σ2
v̇ 0; 0 σ2

θ̇

]
. By performing an a-priori estima-

tion based on function f, where f represents the unicycle
model (2), the state estimate can then be expressed as
χ̂−
k and the a-priori estimate covariance matrix denoted

by P−
k .

• A-posteriori estimation: The update step corrects the
state prediction χ̂−

k by considering a new measurement,
γk. In particular, given an observation equation H , we
can obtain the predicted measured states γ̂k, the expected
covariance of the measurements S̃k and the cross corre-
lation Ck. Thus, the covariance matrix of the measure-
ments, the Kalman gain, the updated state estimate and
the a-posteriori estimated covariance matrix are given as,
respectively, Sk = S̃k + Rk, Kk = CkS

−1
k , x̂k =

x̂−k +Kk(γk − γ̂k) and Pk = P−
k −KkSkK

T
k .

For the sake of brevity, the complete details will be omitted in
this manuscript but they are available in [18], [20].

V. COLLISION DETECTION

Evaluating the risk of a collision when two conflicting
paths merge is a key component of the proposed CA system.
In this paper, we propose a new approach where a vecto-
rial space (representing a collision) is defined and compute
the probability of the estimated vectors (connecting the two
vehicles) lying within the collision space. In the sequel, we
characterize all the positions, with respect to the reference
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Fig. 5. Illustration of vectorial spaces A1 and A2 representing an effective
collision.

frame placed at the ego vehicle’s front bumper, that correspond
to a collision2.

With respect to the middle point of the front bumper of
the ego car, it is possible to define two convex Euclidean
spaces, denoted by A1 and A2. An illustration is provided in
Fig. 5, where L and W denote the length and width of the ego
vehicle, respectively, while L̄ and W̄ are the length and width
of the other vehicle. Note that, although the length of the other
vehicle is assumed to be known, it is possible without loss of
generality to redefine new collision boxes based on real-time
measurements of the other vehicle’s length. Furthermore, and
in order to capture the duration of a collision, the evolution
of the rear bumper of the other car needs to be taken into
consideration. Thus, a collision-free area, denoted by A3, can
be derived as depicted in Fig. 6. It is important to mention that
A3 differs by definition from A2, since here the target point is
the middle point of the rear bumper. Indeed, if the projection of
the position of rear bumper of the other vehicle lies within A3,
then the collision risk is null at that time instant.

In order to design an efficient collision avoidance system,
the probability of a collision still needs to be computed. In
the sequel, we propose a solution based on vectors connecting
the front bumper of the ego vehicle and the front and rear
bumper of the other vehicle, which are represented by bivariate
normally distributed variables. In order to derive the probability
of a collision, the joint cumulative distribution can be computed
by determining the probability distribution over the areas of
interest such as:

PCollision =

∫ ∫
A1

P1(x, y)dxdy +

∫ ∫
A2

P1(x, y)dxdy, (4)

where the bounds of the integrals are defined by the upper and
lower bounds of the collision zones A1 and A2 on the corre-
sponding axis. In an identical way, it is possible to compute the
probability of a collision-free evolution such as:

PFree =

∫ ∫
A3

P2(x, y)dxdy, (5)

knowing that P1 and P2 are bivariate normal distributions
describing the vector between the front bumpers of the two ve-
hicles and the vector between the ego’s front bumper and other
vehicle’s rear bumper, respectively. Further details on the on-
line computation methods of the joint cumulative distribution
are provided in [21].

2 Note that the proposed collision zones may lead to some conservative-
ness, since they may capture configurations that do not effectively lead to
a frontal collision but to very close crossing-trajectories. However, if one
considers that drivers may have a comfort zone, that is, a minimum distance
separating vehicles in these type of maneuvers, it is our believe that the
current collision definition may cope with comfort/safety parameters.
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Fig. 6. Illustration of the collision-free area A3 defined with respect to
the rear bumper of the other vehicle.

Define dc and tc as the distance and time to collision,
respectively. Furthermore, let ∆tc denote the time needed for
the other vehicle to leave the collision area, see Fig. 4. By
combining the predictions given by the UKF with equations
(4) and (5), the probability of a collision can then be computed.
Moreover, the estimates t̂c, ∆̂tc and d̂c and the respective
probability distributions can also be derived. It is worth men-
tioning that in order to guarantee a certainty level on the threat
assessment, a user-defined threshold C1 will be considered. In
other words, only PCollision > C1 will be taken as a serious
threat. Note that C1 should generally be set to a high value in
order to avoid false interventions on non-threatening situations.
For further details, the reader can refer to [20].

Remark 2: The prediction of d̂c is strictly related to the
predicted t̂c such that when the latter is under or overestimated,
d̂c will increase/decrease accordingly. Indeed, d̂c is computed
by the distance possibly travelled during t̂c seconds, based on
the predicted speeds and accelerations. This yields that the
uncertainty on d̂c is not captured as an uncertainty on the
collision point, but rather as the uncertainty on the computation
of the distance the ego vehicle can travel over that time.

VI. COLLISION AVOIDANCE

In this section, we will present the main principles behind the
proposed decision-making protocol and intervention algorithm.
We are particularly interested in identifying the so called “point
of no return”, from which a collision is unavoidable. The
contribution of this article relies on a formal decision-making
protocol regarding the need of an immediate intervention. More
precisely, reachability analysis tools have been used for the
derivation of simple, yet formally verifiable safety conditions.
It will be shown that the proposed algorithm guarantees safety,
avoiding the collision area for the risky period while integrating
the uncertainties connected to the estimation of the distance to
collision d̂c. Furthermore, this approach aims to minimize the
amount of false interventions by intervening as late as possible
but always before the point of no return, assuming that the
available time and information are sufficient. The following
definition is taken from [13].

Definition 1 (One-step and z- step controllable sets):
Consider a system subject to external inputs described by
χ(k+1) = f(χk, uk), where χk ∈ X , uk ∈ U , and k ≥ 0. We
denote the one-step controllable set to the set T as:

Pre(T ) , {χ ∈ X : ∃u ∈ U s.t. f(χ, u) ∈ T }.
Furthermore, the z-step controllable set Kz(T ) to the set T is
defined recursively as follows, where m ∈ {1, . . . , z}:

Km(T ) , Pre(Km−1(T )) ∩ X , K0(T ) = T . �

In other words, Pre(T ) is the set of states which can be
driven into the target set T in one time step whereas all states
belonging to the z-step controllable set Kz(T ) can be driven,
by a suitable control sequence, to the target set T in z steps
while satisfying input and state constraints.

The critical set S (target set), representing a collision be-
tween the two vehicles and parameterized with respect to the
distance to collision, is defined as follows:

Sk =

{
d̂c| 0 ≤ d̂c ≤ dmax
v̂ | 0 ≤ v̂ ≤ vmax

}
, (6)

where vmax is the maximum allowed speed and dmax rep-
resents the maximum distance traveled over the prediction
horizon if the vehicle is traveling at vmax.

Consider Definition 1. In order to capture the individual
degree of freedom of the ego vehicle with respect to a potential
collision, we are interested in determining if there exists a
trajectory leading the ego vehicle to the critical set in a finite
number of steps, under any feasible control input. Thus, we
introduce here the notion of attraction set, denoted by Ai,
which corresponds to i-step controllable set Ki(S). In other
words, the set Ai includes all possible state configurations that
will lead the ego vehicle, unavoidably, to its critical set S in i
steps given a constrained acceleration such that −αf ≤ v̇k ≤
0. The reader can refer to [13] for further details on reachability
analysis.

Consider that predictions on the time to collision t̂c and col-
lision duration ∆̂tc are available from the estimation algorithm
presented in Section V. It follows from the definition of the
attraction sets that in order for a collision to be avoided during
the interval t ∈ [t̂c, t̂c + ∆̂tc], the following condition needs to
be satisfied:

χk 6∈ At̂c+j , ∀j = 0, ..., ∆̂tc. (7)

For obvious reasons, it is not enough to verify (7) at each time
step in order to guarantee a collision-free trajectory. Indeed,
if (7) is not satisfied at the current instant, then a collision is
already unavoidable and can only be mitigated. Furthermore, it
is also important to incorporate the vehicles reaction time tr,
assumed to be equal to the time it takes for the vehicle to build
up full brake pressure and also known as the ramp up time.

Given the current state and the predictions provided by
the UKF-based prediction algorithm, the emergency braking
procedure should be triggered if the following condition is
satisfied:

χ̂tr+1 ∈ A(t̂c+j)−(tr+1), ∀j = 0, ..., ∆̂tc, (8)

where χ̂tr+1 represents the state vector of the ego vehicle
predicted tr+1 steps in the future. If (8) is true, then a collision
will be unavoidable in tr+1 steps. Thus, an intervention should
be triggered immediately in order to avoid it.

By taking advantage of the structure of the problem, formal
safety expressions are given in (7) and (8), where safety can
be guaranteed by performing set-memberships tests verifying
these two conditions. Note that (8) incorporates both the ve-
hicle’s reaction time and predicted motion profile in order
to access the latest moment to trigger an intervention. It is
however important to also consider the process noise, since
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Fig. 7. Illustration of the proposed probabilistic decision-making pro-
cedure. Considering a normally distributed state prediction χ(tr+1), set-
memberships tests accordingly to equation (8) are performed for several
discrete points over the distribution.

such may critically influence certain parameters. Thus, it is
crucial to develop an efficient decision-making protocol in a
probabilistic setting. The main idea behind the proposed ap-
proach is depicted in Fig. 7 and explained as follows. Assuming
that the uncertainty on d̂c is normally distributed, it is then
possible to compute the probability of the predicted state χ̂tr+1

belonging to a given attraction set, denoted by PInside, by per-
forming set-membership tests for several discrete points over
the distribution. By comparing such value with a user-defined
threshold C2, defining the level of certainty of the decision-
making algorithm, a choice regarding an intervention can be
securely made. The reader can refer to [20] for a thorough
explanation of the proposed algorithm.

VII. RESULTS AND SIMULATIONS

Consider an intersection scenario as illustrated in Fig. 1,
where two cars travelling in opposite directions risk to be
engaged in a frontal collision satisfying the initial assumptions.
Considering the initial position/configuration of the ego vehi-
cle, a collision will take place, in absence of a intervention,
at tc = 9.04s. However, given the other car’s original/desired
motion profile, the collision area would have been released by
t = 9.2s. Therefore, this yields that there is a collision threat
for a period of ∆tc = 0.16s. Recall that upon a detection of
a collision, a braking intervention should be triggered, where
the reaction time related to the brakes’ pressure build-up is set
to be tr = 0.24s ' 3∆t and af = 8.5 m/s2, accordingly
to [22]. In this work, the time step of the system has been set
to ∆t = tk+1 − tk = 0.08s, defining the update ratio of all
the different system’s components. Let also C1 = 90% and
C2 = 50% be two tunable parameters controlling the sensitivity
of the CA system: the first defines the confidence factor on the
collision’ probability computation; the second the confidence
factor on the decision-making protocol. Regarding the process
noise, the following process matrices are considered:

Qp =

[
0.352 0

0 0.01352

]
∆t

2
, Qe =

[
4 0
0 0.3

]
∆t

2
, Qo =

[
Qe 0
0 Qe

]
,

where theQe andQo are used within the filtering algorithm for
the ego and other vehicle, respectively, and Qp for predictions.
For the derivation of the following results, it is worth mention-
ing that realistic data has been used. This data was collected
in two real vehicles equipped with highly accurate inertial
measurements and GPS units, where the motion of the vehicles
was subject to a longitudinal offset due to obvious safety
reasons. The collected data, where the offset was eliminated,

has later been used for different simulation setups considering
realistic noise levels.

Fig. 8 illustrates the performance of the proposed system
taking into consideration different noise levels on the mea-
surements. Consider Fig. 8(a). One can see that a collision
is detected at t = 8.24s and the intervention triggered at
t = 8.40s. Given the reaction time tr, this yields that braking
is initiated at t = 8.64s, very close to the optimal braking
procedure 3, initiated at t = 8.67s. On the other hand, it
follows from Fig. 8(b) that the predicted t̂c, illustrated by
the dashed red lines, is in fact an accurate prediction. The
duration of the collision, however, is slightly overestimated.
Though, it is clear from the evolution of the full blue line that
the collision is avoided and therefore safety is guaranteed. It
also worth comparing this result with the theoretical one. By
comparing the green and blue trajectories, it follows that the
introduced conservativeness is related to the estimation error
on ∆̂tc. However, this results clearly show the potential and
effectiveness of the proposed algorithm. Take now Fig. 8(c) and
8(d), where noisy measurements are considered. As expected,
both the predicted t̂c and ∆̂tc lack of accuracy, as one can see
by comparing the expected collision interval (illustrated by the
vertical black lines) and the real collision interval (dashed red
lines). Same conclusion can be driven regarding the distance
to collision prediction d̂c, also less accurate as it can be seen
by the evolution of the blue crosses. Despite a later detection,
however, an intervention has been triggered at an appropriate
time and safety guaranteed, showing that the proposed system
is robust to fairly high noise levels on the measurements.

VIII. CONCLUSIONS

This paper proposes a new, efficient probabilistic collision
detection and decision-making algorithm for safety interven-
tions at traffic intersection. More precisely, this algorithm has
been designed for detecting and avoiding frontal collisions, a
particularly challenging manoeuver. Firstly, we have proposed
a probabilistic path prediction algorithm based on a unscented
Kalman filter. Secondly, by defining the Euclidean space repre-
senting all possible conflicting configurations, an elegant threat
assessment protocol has been proposed, able to detect with a
certain degree of certainty a future collision. Finally, we have
proposed a minimally invasive intervention protocol, based
on a emergency braking triggered as late as possible. Several
simulation and implementation results based on realistic data
obtained for this specific scenario have shown the efficiency
and potential of the proposed system. Furthermore, preliminary
experimental results indicate that the proposed solution is real-
time efficient and functional. Future works should include
the knowledge of the road geometry/lane topology, different
control principles other than emergency braking, as well as
scenarios including more vehicles.

3The optimal behaviour is computed assuming perfect knowledge of the
system. Given the true dc, tc and ∆tc, the latest possible moment for
applying an emergency braking while still avoiding the collision is computed
by backward iteration, with a very refined update ratio.
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Fig. 8. An illustration of the active-safety system’ behaviour: (a-b) without
additional noise where σv = 0.1m

s
, σR = 0.01m , σθ = 1 ◦, σφ = 0.1 ◦;

(c-d) with additional noise where σv = 0.5m
s

, σR = 0.5m , σθ = 2 ◦,
σφ = 1.375 ◦. In figures (a),(c), from the top to the bottom, the first graph
illustrates the time span where a threat has been identified by the threat
assessment block; the second graph the time span during which a emergency
braking has been triggered by the decision-making protocol; the third
graph the brakes pressure-building procedure and the actual deceleration
triggering instant; the bottom graph the optimal braking time assuming a
perfect knowledge of the scenario. Moreover, the dashed lines highlight
pertinent time instants. In figures (b),(d), the violet line represents the ego
vehicle’s initial/unaltered trajectory, the blue line the path resulting from
the intervention of the CA system while the green line represents the
desired/optimal behaviour of the collision avoidance system. Furthermore,
the red dashed line represents the actual collision time interval, the solid
black lines the estimated collision interval and the two red circles indicate
when braking is initiated and stopped. Finally, the blue crosses illustrate the
predicted (tr steps in the future) mean of d̂c and its variance illustrated by
a blue vertical bar. Note that dc is assumed to take negative values until
collision.
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