
Automotive Safety: a Neural Network Approach for Lane Departure
Detection using Real World Driving Data

John Dahl1,2,3, Rasmus Jonsson1, Anton Kollmats1, Gabriel Rodrigues de Campos1, and Jonas Fredriksson3

Abstract— Lane departures, where the vehicle leaves the lane
due to driver inattention, drowsiness, or incorrect situation
assessment, are one of the most serious accident and fatality
prone scenarios. To further improve traffic safety, we are
asking the question: How much can a neural network approach
improve the reliability of lane departure predictions compared
to traditional model-based methods? Our results show a relative
improvement in reliability of 7% in terms of true positive rate
and 22% reduction of the false positive rate with respect to
a constant velocity model method. The key contributions of
this work are the introduction of sparse sampling in the input
data, a thorough comparison with a baseline solution, and the
evaluation on real world driving data.

I. INTRODUCTION

Nowadays, new vehicles come equipped with ever-more
Advanced Driver Assistance Systems (ADAS), designed to
support drivers in a wide range of scenarios whenever the
drivers fail to maintain safety. Nevertheless, a major theoret-
ical challenge in the presence of human drivers remains how
to precisely distinguish a safe (though perhaps aggressive)
driving behaviour from an unsafe one. The reader can refer
to [1] and [2] for a recent review on threat assessment and
decision making for automotive applications.

One of the situations most prone to serious accidents and
fatalities are run-off-road and head-on scenarios. Over the
last two decades different solutions have been proposed to
this problem, in particular for the design of Lane Departure
Warning (LDW) and Lane Keeping Aid (LKA) systems.
A simple yet powerful indicator of unintended lane de-
parture is the Time-to-Line-Crossing (TLC), defined as the
time duration available before a specified part of vehicle
crosses the lane boundary. Leveraging the notion of TLC
and Distance-To-Line-Crossing (DLC), [3] proposed and
analyzed different methods for TLC computation. In [4],
authors used set invariance theory and reachability analysis
tools for the design of two different model-based threat
assessment methods based on vehicle, driver and driver-
in-the-loop models. In [5] authors proposed a learning-
based approach that leverages a personalized driver model,
obtained by combining a Gaussian mixture model and a
hidden Markov model. This personalized driver model is then
used for the design of an online model-based lane departure

Work supported by Zenuity AB, Vinnova and AI Innovation of Sweden.
1 Zenuity, Gothenburg, Sweden. name.surname@zenuity.com
2 AI Innovation of Sweden, Gothenburg, Sweden.
3 Electrical Engineering Department, Chalmers University of Technology,

Gothenburg, Sweden. name.surname@chalmers.se

predictor, which was benchmarked to a basic time-to-lane-
crossing method (identical to the CVM model considered
later in this paper). In [6], authors tried to identify driver
correction actions with respect to imminent lane departures.
The key concepts behind this work are driver behaviour
models of the Directional Sequence of Piecewise Lateral
Slopes (DSPLS) representing lane-crossing and driver cor-
rection events. Within the scope of data-driven methods,
the authors of [7] used a feed forward neural network to
assess the risk of an unintended lane departure, using a data-
set derived from human-driving in a simulator. While the
data gathered through a simulator might capture the realistic
behaviour of a human-driver, the environment is still assumed
to be deterministic and a simplified representation of the real
world, therefore disregarding measurement uncertainties and
changing environment conditions. Using the same data set
as in [7], a Support Vector Machine (SVM) methodology
is also proposed in [8]. Authors exploit a nonlinear binary
SVM with different kernel functions, and provide prediction
results for 0.2s and 0.4s horizons.

In this work, we present a threat assessment and decision
making method for a LKA system using a data-driven
approach, where the overall goal is to predict whether a lane
departure will occur within specific time horizons prior to
an event. We use a Multi-Layer Perceptron (MLP) network
and evaluate and benchmark our results against a classical
kinematic constant velocity model using a real world driving
data set. The contributions of this work are two-folded: i)
a data-driven threat assessment method that uses sparsely
sampled data as input and ii) an evaluation and benchmarking
analysis performed in real data. Regarding the second topic,
we will argue that our MLP method can outperform a
constant velocity model, which in many cases remains an
acceptable choice for a simplistic threat assessment. It is
worth mentioning that a run-off-road scenario is similar in
many aspects to a lane changing scenario, see for example
[9], [10]. However, an important distinction between the two
cases is that run-off-road scenarios are usually due to driver
unawareness and distraction, while lane changing maneuvers
are normally voluntary.

The remainder of the paper is organized as follows:
Section II introduces the real world data set, while Section III
describes the proposed threat assessment method. Section IV
covers the evaluation procedure, while the experimental re-
sults are presented in Section V. Finally, Section VI presents
our conclusions and future perspectives.



II. REAL WORLD DRIVING DATA SET

In this paper we use a vast data set collected by profes-
sional drivers driving a fleet of test-vehicles under different
weather conditions, on various roads and in different coun-
tries, such as Sweden, Germany and China.

A. Signal definition

The test-vehicles were equipped with a front looking
vision system able to measure the geometries of the lane
markings relative the ego-vehicle, as illustrated in Fig. 1.
Here, dl and dr denote the distance from the front bumper
of the vehicle to the lane-markers on the left and right
side, respectively, while ψl and ψr represent the heading
(i.e., the angle of the vehicle) with respect to the left and
right lane marker, respectively. Note that, if the absolute
distance between two lane markers is constant, then the left
and right heading angles are approximately equal. However,
in situations where the road width increases/decreases, the
headings can significantly differ and even have different
signs. The ego-vehicle’s longitudinal velocity and acceler-
ation are denoted by vlong and along, respectively.

B. Data selection

The quality of the data set varies with respect to different
factors such as weather conditions or worn road markers.
Since the proposed threat assessment method is data-driven,
it is paramount that the data is consistent and representative
of the chosen scenario, i.e., that it properly reflects lane
departure situations. Let the extracted data set be a subset of
the real world data set, where each data sample fulfills the
following criteria:

• sensor measurements of right lane marker are available;
• sensor measurements of left lane marker are available;
• the lane width is not wider than 4 m;
• the curve radius of the road is larger than 250 m;
• the longitudinal velocity is higher than 60 km/h;
• no turn indicator is used when departing from lane;
• no lane change is performed within a 4 s period after a

lane departure;

Since the MLP is trained given a specific set of inputs,
we ensured that signal measurements are always present.
A maximum road width is used to exclude fork and lane
merging scenarios where the road width tends to be large.
Furthermore, we limited the scope to highway roads by
excluding small road radius and low velocities. We also
consider an unintended lane-departure to be characterized by
the absence of any obvious signs of an intentional departure
by the driver. Hence, any departure where the turn indicator
is used has been excluded. Finally, to ensure that the driver
is not conducting a lane-change, the vehicle must return to
its ego-lane within a reasonable time after the departure.

Fig. 1. Scenario illustration: the vehicle, following the path represented
by the dashed red lines, is going to depart from the lane by crossing the
lane marker (black dashed lines) on the left hand side.

C. Data annotation

The extracted data set described before is divided into two
subsets, the first denoting the event set C, and the second
the non-event set B. The event set is used for training the
network and the evaluation of the positive performance,
while the non-event set is used to evaluate the negative
performance. In the scope of this work, we define the positive
performance as the threat assessment method’s ability to
detect a lane departure, and the negative performance as
the threat assessment method’s ability to avoid triggering
erroneous interventions.

1) Construction of the event set C: A simple linear search
algorithm is used to find events in the data set where the
vehicle is departing from the ego-lane, i.e., whenever dl or
dr change from a positive to a negative value.

For each event, we define tm as the time instant when
the vehicle is departing from its lane. Let the event be
represented by a tuple c ∈ C containing the input and target
output data such as:

c = 〈Uct1:tm , T
c
t1:tm〉, (1)

where the input is a tuple of time series which are m samples
long, covering a time-span1 [t1, tm], and given as:

Uct1:tm = 〈dlt1:tm , d
r
t1:tm , ψ

l
t1:tm , ψ

r
t1:tm , v

long
t1:tm , a

long
t1:tm〉. (2)

Note that there are no overlaps in C, i.e., no data samples
are shared among different members of C.

Let h denote the prediction horizon. Since the overall goal
is to predict whether a lane departure will occur within a
prediction horizon h prior to the event, the target output
signal T ct1:tm is defined as a time series:

T ci =

{
1, if tm − h ≤ ti ≤ tm,
0 otherwise, (3)

1The time-span is covering a sequence of m time instances starting m−1
samples before the event at time instant tm.



for i ∈ [1,m], where T ci = 1 if a departure will occur
within the horizon and 0 otherwise, see Fig. 2 for an
illustration. In this work, the whole event set C consists of
8276 events. Furthermore, the events are randomly separated
into a training set CT ⊂ C and an evaluation set CE ⊂ C,
containing 90% and 10% of the events in C, respectively,
and such that CT ∩ CE = ∅.

For consistency, we want the balance between the positive
and negative samples to be constant for all prediction hori-
zons, see Fig. 2. The length m of the time-series is dependent
on the prediction horizon h, and was chosen in such way
that the ratio hfs/m = r holds, where fs = 40 Hz is
the sample frequency. The ratio r determines how many
negative samples should be included prior to an event.
This implies that a higher number of negative samples
yields a better possibility to learn normal, non-event driving
while fewer negative samples yields better training for lane
departure cases (events). In this work we use r = 0.25,
which empirically proved to yield good results. This value
is also similar to the ratio within the interval [0.25, 0.31]
used in [7]. This implies m = {80, 120, 160, 200} samples
for h = {0.5, 0.75, 1, 1.25}s, respectively. Hence, using
m = 200 samples, the corresponding driving time for C is
approximately 12 hours.

2) Construction of the non-event set B: The non-event set
contains only in-lane driving, i.e., it is free of lane departure
events2. Structure-wise, the non-event set is identical to the
event set, such that:

b = 〈Ubt1:tn , T
b
t1:tn〉, (4)

where b ∈ B, the time series are of length n = 480 and the
target output T bi = 0 for i ∈ [1, n]. In total, the non-event
set consists of 199528 members (corresponding to 665 hours
of driving), and is thereby many times larger than the event
set C.

D. The sliding window technique with sparse sampling

To form input-output data pairs for training and evaluation
purposes, a sliding window technique is used3. For a given
time index i in the time series and a member � of either C or
B, the corresponding data pair is expressed by 〈U�

i , T �
i 〉. By

utilizing this construction with a sliding i over the indices in
the time series, e.g., from sample i = 1 until i = m in the
case of � ∈ C, one extracts m data pairs per each member �.

It is also desirable to make use of sparse historic data,
yielding a memory effect, in order to limit the measurement
noise influence and to capture trends over time. Let us define
an offset set:

Γ = {γ1, γ2, ... , γl}, (5)

2Note that even though there are no events present in the non-event set B,
there might still be situations where the vehicle is very close to departing
the lane, which are in general challenging situations for any type of threat
assessment method and can lead to false lane departure detections.

3The sliding technique is used for both the C and B set.

Fig. 2. A subset of the real world data set, called the extracted data set
is derived by applying the criteria in Section II-B. P represents the set of
samples where T � = 1 (� being a substitute for b ∈ B or c ∈ C) and the N
the set where T � = 0. An element c ∈ C consists of time series where the
first part, in chronological order, is taken from the N set and the later part
from the P set. A member b ∈ B consist of time series, where all samples
are taken from the N set. Here, m and h represent the time series length
and prediction horizon, respectively.

where γ corresponds to an offset expressed in number of
samples. Furthermore, an input pattern is introduced as:

pΓ
i = {ti−γ1 , ti−γ2 , ... , ti−γl}, (6)

defining the historic time instances, sampled relative to the
current time instance ti, see Fig. 3 for an illustration. The
offsets can be chosen freely4 as long as ti−γk < ti for
k ∈ [1, . . . , l] holds. Using the input pattern in (6), pairs
are formed as:

〈U�
pΓ
i
, T �
i 〉. (7)

The offset sets used in this paper are taken as follows:
Γ1 = {0, 1, 2}, Γ2 = {0, 1, 14}, Γ3 = {0, 7, 14} and Γ4 =
{0, 2, 9, 14}. Offset set Γ1 uses the three most recent samples
as an input, which should give the network an averaging
capability, if needed. In Γ2, the same principle is applied
but using only the two latest samples together with the 14th

older sample as an input. The idea is that the last sample
should help finding the trend of the trajectory. The offset
set Γ3 is specialized for finding the trend with evenly but
sparsely sampled inputs. In Γ4 we used two recent samples
and two older samples.

Note that the aforementioned sliding window tech-
nique implies that each member from C and B generates
(m − max(γk)) and (n − max(γk)) pairs of input-output
data, respectively, where k ∈ [1, l].

III. THREAT ASSESSMENT

This section provides an introduction to the principles
behind the threat assessment methods considered in this

4The definition in (6) allows for sparse sampling of the historic data.
Thus, old samples are not even forced to be considered in a consecutive
temporal order, which gives the designer the freedom to choose any desired
input pattern.



paper. The methods have been implemented in Python using
the frameworks Keras [11] and Tensor-Flow [12].

A. The neural network approach

Since the expected outcome is a binary classification, the
problem can be interpreted as a logistic regression problem.
We rely on the hypothesis that the relationship between
the input and output signals might be non-linear. Hence,
we choose to use a fully connected Multi-Layer Perceptron
(MLP) method due to its well known ability to learn non-
linear relationships in the data. It should be emphasized that
other ML based methods such as, e.g., SVM, logistic regres-
sion or random forests could lead to similar performances
to the ones reported in this paper. However, an analysis and
comparison of different ML approaches is outside the scope
of this work and should be considered in future research.

Let the MLP function be denoted by fh,Γ such that:

T̂i = fh,Γ(UpΓ
i
), (8)

where i is the time index, T̂i the estimated output, Γ the
time offset set, pΓ

i the input pattern for a given c, and h
the prediction horizon. Hence, the MLP is trained given a
specific combination of h and Γ, referred to in the remainder
of the paper as a MLP configuration. The MLP consists
of four fully connected layers, where the first three layers
have 128 neurons, each followed by a single neuron output
layer. All layers are using sigmoid activation functions. For
more information about neural networks, see e.g. [13]. Note
that we have also analyzed, in complement to the content
of this paper, the performance with respect to the number
of neurons per layer in the range 16 - 512 neurons, but 128
neurons per layer yielded the best performance.

A first-order gradient-based optimizer for stochastic loss
functions, called the ADAM optimizer [14], was used. The
optimizer is claimed to be well suited for large scale op-
timization problems with a large amount of training data
and/or many parameters. The loss function is chosen as the
binary cross-entropy function defined as:

L(T̂i, Ti) = −Ti log(T̂i) + (1− Ti) log(1− T̂i), (9)

where Ti is the target output value and T̂i the predicted output
value of the network. The binary cross-entropy function
penalizes large deviations from the target while perfect
predictions yield no penalty. Furthermore, the input signals
are normalized with its mean and standard deviation to
reduce the impact of large differences in magnitude among
the signals, and a drop-out of 30% for each layer is used to
prevent over-fitting, see [15].

The MLPs were trained for 200 epochs using the training
event set CT consisting of 7449 events for a prediction
horizon of h = {0.5, 0.75, 1, 1.25}s using the sliding window
technique described in Section II-D. Finally, for decision-
making purposes, a manoeuvre is supposed to be triggered
or activated if the output of the network T̂ exceeds a given
confidence level threshold Ttrig.

Fig. 3. A lane departure scenario example. The target outcome T of
the MLP method, the Acceptance Time Window (ATW), the triggering
confidence level Ttrig and the MLP outcome T̂ are illustrated in the upper
figure for a prediction horizon h = 0.75 s. The lower figure shows the
distance to the left and right lane marker and an example of a sparse and
uneven sampling pattern (magenta colored circles) of historic data (i.e., prior
data) using the sliding window technique described in Section II-D.

B. The kinematic approach

To benchmark the proposed MLP method, a Constant
Velocity Model (CVM) is used to estimate the Time-to-
Lane Crossing (TLC). To derive the CVM model, let us first
compute the lateral velocity vlat given as:

v(·),lat = sin(ψ(·))vlong, (10)

where the notation (·) means that it can be computed for both
left and right side, yielding vl,lat and vr,lat respectively. The
estimated Time-to-Lane-Cross (TLC

∧
) can then be defined as:

TLC
∧(·)

=
d(·)

v(·),lat . (11)

The CVM approach is explained as follows. The left TLC
∧l

and right TLC
∧r

are computed separately, and the minimum
TLC
∧

chosen for threat-assessment purposes. Regarding the
decision making, an intervention is triggered if the resulting
TLC
∧

≤ Ttrig, where Ttrig = h. Note that since the model is
parameter-less, no training is required. However, the model
has no inherent filtering capabilities, and is thereby sensitive
to measurement uncertainties.

IV. SCENARIO BASED EVALUATION

In this section we describe the methodology to assess the
performance of the two aforementioned threat assessment
approaches, i.e., the proposed MLP method and the CVM
approach. We evaluate the precision (i.e., the correctness
of the classification) as well as the timing of the decision
making, also referred to in the following as the triggering
time. The event set CE is used to verify the positive per-
formance while the non-event set B is used to verify the
negative performance. The evaluation is performed for every
event c ∈ CE and b ∈ B respectively, and the outcome of
the threat assessment/decision making methods are analyzed



in consecutive order, from time instance t1 until the time
instant a triggering decision has been reached, or otherwise
until the end of the time series.

For the evaluation of a given element b ∈ B, if a predicted
departure is detected at any time instance the evaluation is
stopped and classified as a False Positive (FP), and otherwise
classified as a True Negative (TN). The evaluation of an
element c ∈ CE is slightly more complex and is explained
as follows. Let us define an Acceptance Time Window
ATW = [tm − tatw, tm], where tatw is a free parameter
which denotes the earliest acceptable time for a triggering,
see Fig. 3 for an illustration. Furthermore, let us denote the
time instant of the triggering as τ . Now, the outcome can
either be classified as a True Positive (TP), a False Negative
(FN) or a FP. A triggering is classified as a TP if τ ∈ ATW ,
a FP if τ 6∈ ATW , and a FN if no triggering occurs.

As the CVM method is widely used within the automotive
industry, one can argue that its performance can be consid-
ered as a baseline for performance analysis purposes. We
assessed the CVM’s performance by evaluating the CVM
method on every c ∈ CE , at the time instant t = tm−h, and
form an empirical distribution as shown in Fig. 4, for exam-
ple. Denote TLC

∧∗
as the maximum argument of the empirical

distribution. One can then define the earliest acceptable trig-
gering time for the ATW as tatw = κ|TLC

∧∗
|, where κ is an

tunable, designer-chosen scale factor. A detailed description
of the procedure for computing tatw is given in Alg. 1. In
this work, we used a κ = 2 as it seemed to yield an ATW that
captures the significant and reasonable part of the estimated
TLCs. Computing the ATW for h = {0.5, 0.75, 1, 1.25} s
yielded a tatw = {1.27, 1.48, 1.71, 2.46} s, respectively.
Note that, formally, our discussion on this figure entails
on setting the event time to tm = 0, which also implies
negative time instances for all samples before the event. Even
if negative time is a non-realistic concept, this is however just
a notation convention introduced for the sake of simplicity
of the discussion.

Remark 1: The reader should be aware of the difference
between the estimated TLC

∧
computed by the CVM method

and the true TLC. The true TLC is defined as TLC = tm−τ ,
while TLC
∧

is an estimate derived according to (11) for t = τ .
Close to an event, the two values are expected to be similar,
but the correlation might be weak otherwise.

V. RESULTS

In this section we evaluate the performance of the pro-
posed threat assessment method for detecting unintended
lane departures using real world driving data. Note that
other threatening obstacles such as vulnerable road users
and vehicles may be present but are not explicitly taken into
consideration by the proposed threat assessment approach, as
such topic lies outside of the scope of this work. Our analysis
will be articulated around two aspects: (i) the triggering
timing and (ii) the relative classification performance.

-3 -2.5 -2 -1.5 -1 -0.5 0

TLC [s]

0

20

40

60

80

100

120

N
u
m

b
e
r 

o
f 
o
c
c
u
rr

e
n
c
e
s

Fig. 4. An empirical distribution function for h = 0.75 s used to derive
the ATW. The blue solid vertical line indicates the argument maximum
TLC
∧∗

, while the red dashed line yields the earliest acceptable triggering
time tm− tatw , where tm = 0. For convenience, all values above 3s have
been omitted.

Algorithm 1 The earliest acceptable triggering time tatw
O ← 〈∅〉, t← tm − h
for each c ∈ CE do

Append {min(
dlt
vlt
,
drt
vrt

)} to O
end for
TLC
∧∗

← argmax(Histogram(O))

tatw ← 2× |TLC
∧∗

|

1) Triggering timing: While the decision threshold for the
CVM method is set, by construction, to the desired prediction
horizon Ttrig = h, there is no obvious way to chose
the decision confidence level threshold Ttrig for the MLP
approach. However, such a choice has a significant impact on
the performance, and in particularly on the triggering timing.

Fig. 5 shows the outcomes for four different confidence
level thresholds. One can see that the mean triggering time
MLP , computed by averaging over all triggers within the
ATW defined before, is decreasing for higher confidence
levels Ttrig. At the same time, the triggerings outside of
the ATW, seen at the left of the histograms, are moved
into the ATW for high confidence levels. Hence, the TP
number increases with higher confidence levels at the same
time as the mean triggering time decreases. In other words,
the MLP method will eventually take the right decision
but it might be too late for a proper corrective manoeuvre.
To do a fair comparison between the CVM and MLP
methods, in terms of FP and TP performance, the mean
triggering time is marginalized by choosing Ttrig such that
CVM = MLP holds for each MLP configuration and
prediction horizon. Note that the CVM mean triggering time
is CVM = {0.46, 0.67, 0.9, 1.15} s for a prediction horizon
h = {0.5, 0.75, 1, 1.25} s, respectively.

2) Relative classification performance: Before discussing
the relative classification performance between the MLP
and CVM approaches, it is important to emphasize that
the aforementioned methods are implemented without any
additional features/adjustments that would robustify the de-
cision making procedure such as a suppress criterion for
scenarios where the vehicle drives a long time close to the
lane marker or an averaging filter on the decision signal.
Even if the individual, absolute performance could be signif-



(a) Ttrig = 0.5 (b) Ttrig = 0.6

(c) Ttrig = 0.7 (d) Ttrig = 0.8

Fig. 5. Triggering timing for the CVM and MLP methods for a prediction
horizon of h = 1 s. The mean triggering time is computed as the average
time for all triggerings within the ATW. The CVM method’s mean triggering
time CVM = 0.9 is static since by construction Ttrig = 1 s. Higher Ttrig
values yield a higher number of correct decisions but later mean triggering
time MLP values.

(a) TPR (b) FPR

Fig. 6. Classification performance for the CVM method and the MLP
approach with Γ1 = {0, 1, 2}, Γ2 = {0, 1, 14}, Γ3 = {0, 7, 14} and
Γ4 = {0, 2, 9, 14}: (a) True Positive Rates (TPRs); (b) False Positive
Rates (FPRs).

icantly improved by implementing such features or method
adjustments, this lies outside of the scope of this paper and
should be considered a part of the industrialization phase.
In the remaining of this section, we will therefore solely
focus on the relative performance between the CVM and
MLP methods as presented earlier in this paper.

The event set is used to derive the True Positive Rate
(TPR) for the MLP and the CVM methods. From Fig. 6a
one can conclude that all MLP configurations perform better
than the CVM, i.e., have higher TPR values with respect
to the CVM. The largest improvements are achieved for
prediction horizons 1 s and 1.25 s, yielding a relative
improvement of 7% and 6%, respectively. The non event
set is used to compute the False Positive Rate (FPR), and
the corresponding results are depicted in Fig. 6b. One can
see that for shorter prediction horizons there is no evident
improvement with respect to the CVM method, i.e., the FPR
of the MLP method is not significantly lower than the CVM,
while for a prediction horizon h > 1 s the MLP approach can

reduce the false positive rate up to 22%. One can also see that
the MLP method using the input offset set Γ3 = {0, 7, 14}
offers the best performance for longer prediction horizons.

VI. CONCLUSIONS

We have shown that a Multi-Layer Perceptron (MLP) can
improve, when compared to a Constant Velocity Model, the
reliability of lane departure predictions by 7% in terms of
true positive rate and almost 22% in terms of the false posi-
tive rate. The best results achieved for prediction horizons of
1 s or longer were obtained with sparse historic input data.

Based on the presented results, we pose the following
questions for future research:

• Can different network architectures, hyper-parameter
optimization and different input signals (e.g., the for-
ward road geometry seen by the front mounted camera),
further improve the performance of MLP networks?

• Can alternative machine learning approaches such as
SVM or random forests methods outperform a MLP?

REFERENCES

[1] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion pre-
diction and risk assessment for intelligent vehicles,” ROBOMECH
journal, vol. 1, no. 1, p. 1, 2014.

[2] J. Dahl, G. Rodrigues de Campos, C. Olsson, and J. Fredriksson, “Col-
lision avoidance: A literature review on threat-assessment techniques,”
IEEE Trans. on Intelligent Vehicles, vol. 4, no. 1, pp. 101–113, 2019.

[3] S. Mammar, S. Glaser, and M. Netto, “Time to line crossing for lane
departure avoidance: A theoretical study and an experimental setting,”
IEEE Trans. on Intelligent Transportation Systems, vol. 7, no. 2, pp.
226–241, 2006.

[4] P. Falcone, M. Ali, and J. Sjöberg, “Predictive threat assessment
via reachability analysis and set invariance theory,” IEEE Trans. on
Intelligent Transportation Systems, vol. 12, no. 4, pp. 1352–1361,
2011.

[5] W. Wang, D. Zhao, W. Han, and J. Xi, “A learning-based approach
for lane departure warning systems with a personalized driver model,”
IEEE Trans. on Vehicular Technology, vol. 67, no. 10, pp. 9145–9157,
2018.

[6] P. Angkititrakul, R. Terashima, and T. Wakita, “On the use of stochas-
tic driver behavior model in lane departure warning,” IEEE Trans. on
intelligent transportation systems, vol. 12, no. 1, pp. 174–183, 2011.

[7] J. M. Ambarak, H. Ying, F. Syed, and D. Filev, “A neural network for
predicting unintentional lane departures,” IEEE International Confer-
ence on Industrial Technology, 2017.

[8] A. A. Albousefi, H. Ying, D. Filev, F. Syed, K. O. Prakah-Asante,
F. Tseng, and H.-H. Yang, “A support vector machine approach
to unintentional vehicle lane departure prediction,” IEEE Intelligent
Vehicles Symposium, 2014.

[9] C. Wissing, T. Nattermann, K.-H. Glander, and T. Bertram, “Trajectory
prediction for safety critical maneuvers in automated highway driving,”
IEEE Conference on Intelligent Transportation Systems, 2018.

[10] P. Kumar, M. Perrollaz, S. Lefèvre, and C. Laugier, “Learning-based
approach for online lane change intention prediction,” IEEE Intelligent
Vehicles Symposium, 2013.

[11] F. Chollet et al., “Keras,” https://keras.io, 2015.
[12] M. Abadi et al., “TensorFlow: Large-scale machine learning on

heterogeneous systems,” https://tensorflow.org, 2015.
[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT

Press, 2016.
[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” International Conference on Learning Representations, 2015.
[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.


