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Abstract— In this paper, a path prediction model is presented
and used to detect unintended lane departures caused by
erroneous driving behaviours. The prediction model is inspired
by the concept of a linear vector autoregressive model that is
commonly used for multiple time series analysis. The original
concept is extended to allow sparse historic sampling, which
is shown to reduce the computational complexity while main-
taining the predictive performance. A real world data set is
used to derive and validate the proposed model, for which the
performance is benchmarked against a kinematic model. The
results show that the proposed model can improve the true-
positive rate by 18% and reduce the false-positive rate by 34%,
with respect to a constant velocity model and for a prediction
horizon of 1.75 s.

I. INTRODUCTION

Automotive Collision Avoidance Systems (CAS) have
been a popular research topic for decades, covering ap-
plications such as automated braking, Lane-Keeping Aid
(LKA) and collision avoidance at intersections. In recent
times, automotive manufacturers have industrialized such
techniques and they are now important cornerstones in the
pursuit of reducing traffic fatalities caused by driver errors.
However, despite the trend of falling numbers in traffic
fatalities, it remains a fact that driver errors are still a severe
issue. According to [1], in 2016 the most common cause
of accidents with fatal outcome (30%) within the European
countries is single vehicle accidents. Furthermore, these
accidents tend to happen in rural areas where the speeds can
be considerably high, and where run-off-road and collision
with standing still objects can have dramatic outcomes.

An effective way of preventing single vehicle accidents is
therefore to ensure that the vehicle does not unintentionally
depart from the lane. In a CAS, and in particular for a
lane-departure detection system, prediction models are used
for Threat Assessment (TA), where future behaviors and
potential driving errors are detected. The output of the TA
is used to make a decision on whether the driver should
be assisted with an automated steering maneuver. However,
it is challenging in practice to derive an accurate prediction
model that can adapt to various situations, drivers and sensor
uncertainties, see e.g., [2], [3] for thorough reviews on
prediction models and threat assessment techniques.
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A. Related work

Different tools and approaches have been proposed in the
literature regarding prediction models for threat-assessment
and decision making purposes in safety critical situations.

For instance, some prediction models can, in some cases,
predict the future threat level without providing any insight
in how the lane departure will occur. For example, the
unintended lane departure problem can be seen as a logistic
regression problem [4], [5], [6]. In [4] a Support Vector
Machine (SVM) is used to make logistic regression on a data
set derived from human driving in a simulator. The work is
extended in [5], where the SVM is replaced by a Neural
Network (NN). A similar approach is used in [6], where an
NN is shown to outperform a kinematic based model using
a real world driving data set. Despite the high predictive
performance of the proposed approaches, their outputs do not
reveal the criticallity of the situation, i.e., the model output
is the same for a lane departure with low heading angle and
a lane departure with a high heading angle towards the lane
marker.

Other works derive path prediction models that provide an
explicit future trajectory explaining how the vehicle will de-
part from the lane. A simplistic approach to path prediction is
to assume that the motion of a vehicle is solely dependent on
its kinematics, i.e., neglecting the driver input over the pre-
diction horizon [7]. Examples of commonly used kinematic
models are the Constant Velocity model (CV), Constant Turn
Rate and Velocity model (CTRV), [8], and Constant Turn
Rate and Acceleration (CTRA) model, [8], [9]. Kinematic
models are typically best suited for short prediction horizons,
due to their inability to adapt to changes in driver behavior
over the prediction horizon. However, [9] has shown that by
mixing a CTRA model and a simple maneuver recognition
module (consisting of a set of predefined trajectories), the
prediction performance can be improved also for longer
prediction horizons. In [10] authors proposed a learning-
based approach that leverages a personalized driver model,
obtained by combining a Gaussian mixture model and a
hidden Markov model. This personalized driver model is then
used for the design of an online model-based path predic-
tor, which was benchmarked against a basic Time-to-Lane-
Crossing (TLC) method. In [11], a Recurrent Neural Network
(RNN) in combination with a deep ensemble technique is
used to predict the future path with corresponding uncertainty
of obstacle vehicles. The same problem is addressed in [12]
where the performance of a NN, RNN and a Hybrid NN
is benchmarked using a simulation environment. But while



Fig. 1. A vehicle departing from the lane. The blue solid lines indicates the trajectory of the vehicle relative the lane markers, depicted as black dashed
lines. The red dashed lines are approximations of the lane markers, which are derived from the front camera system. The blue filled circles indicate the
center of the vehicle for different time instances. The goal is to develop a prediction model that can predict the distances to the left and right lane markers,
h steps ahead, given the information available at current time instance t.

such learning-based models achieve high predictive perfor-
mance, they suffer in terms of real-time performance due to
the numerous computations for each forward pass.

B. Contribution statement

The goal of this work is to derive a computationally effec-
tive prediction model that can accurately predict unintended
lane departures using in-vehicle sensor data. The prediction
model is inspired by tools commonly used in multiple
time series analysis [13]. Moreover, the prediction model
is developed for prediction horizons up to 1.75 seconds and
is evaluated using a real world data set including several
passenger vehicles and drivers. The main contributions are:

• a multiple linear regression (MLR) prediction model,
based on multiple time series, that can predict the
distance to the left and right side lane-marker h-steps
ahead;

• a novel MLR model formulation leveraging Sparse
Historic Sampling (SHS);

• preliminary results showing that SHS can reduce the
number of coefficients in the MLR model while main-
taining the predictive performance;

• results and discussions that show that the MLR models
outperformed, in general, the kinematic model for all
prediction horizons.

C. Outline

The remainder of the paper is organized as follows:
Section II introduces the real world data set, while Sec-
tion III describes the concept of multiple time series analysis.
Section IV covers the threat assessment and decision mak-
ing logics, while the experimental results are presented in
Section V. Finally, Section VI presents our conclusions and
future perspectives.

II. REAL WORLD DRIVING DATA SET

This work makes use of a vast data set, property of
Zenuity AB, as a basis for model evaluation. It has been

collected by professional drivers driving a fleet of test-
vehicles under different weather conditions, road types and
countries such as Sweden, Germany and China.

A. Input signals definition

The test-vehicles are equipped with a forward looking
vision system, including software to estimate the geometry
of the lane markings relative to the ego-vehicle, as illustrated
in Fig. 1. Here plt and prt denote the approximate lane-marker
polynomials on the left and right side, respectively. They can
generically be written as:

p�t (xt) = a�0,t + a�1,txt + a�2,tx
2
t + a�3,tx

3
t , (1)

where xt is the longitudinal distance, t the time instance, and
the � symbol a wildcard indicating the side of the vehicle. In
addition to the polynomials, the vision system also estimates
the range of view rw�

t , which is the longitudinal distance
for which the polynomials are valid. Furthermore, the yaw
rate ωt, front wheel angle δt and longitudinal velocity vlongt

are obtained from the ego-vehicle’s CAN-bus. Each signal is
sampled with a sampling frequency of fs = 1/Ts = 40 Hz.

B. Data selection

The quality of the signals in the data set varies with respect
to different factors such as weather conditions or worn lane
markers. Since the threat assessment method proposed later
in this paper is data-driven, it is paramount that the data is
consistent and representative of the chosen scenario, i.e., that
it properly reflects lane departure situations.

Let the extracted data set be a subset of the real world data
set, where each data sample fulfills the following criteria:

• the lane width is not wider than 4 m;
• the curve radius of the road is larger than 250 m;
• the longitudinal velocity is greater than 60 km/h;
• no turn indicator is used when departing from lane;
• no intentional lane change is performed within a 4 s

period after a lane departure;
Since the extracted data set should reflect unintended lane
departures on rural and highway roads, these criteria are



effectively excluding situations such as regular lane-changes,
queuing, forks, merges and roundabouts.

C. Data annotation
The annotation of the extracted data set is straightforward

since each signal is a time series. Given a time instant t and
a prediction horizon of H seconds, the future lateral distance
to the lane marker is simply d�t,h = p�t+h(0) = a�0,t+h, where
h = H/Ts. The annotated data is divided into a non-event
data set |B| = 3000 and an event data set |C| = 12645, where
the notation | | indicates the total number of time series
sequences in the set. The non-event set contains time series
sequences of length 11 s with only normal driving in lane,
i.e., where no lane departures occur, and is used to evaluate
the false-positive performance. The event set contains short
snippets of time series where each snippet ends with a lane
departure, i.e., the shortest distance among d�t,h is less or
equal to 0. The snippet’s duration is a design parameter
affecting the balance between normal driving and driving
leading to a lane departure. The snippet’s length used in
this work is proportional to the prediction horizon, and is
given by 4H s. The event set is divided into an estimation
set |Ce| = 10645 used for model coefficient estimation, a
calibration set |Cc| = 1000 used for performance calibration
and a test set |Ct| = 1000 used for testing the model
performance. Note that Ce, Cc and Ct are mutually exclusive,
and that all data samples have been standardized.

III. MULTIPLE TIME SERIES ANALYSIS

Define a time series as a sequence of states Yt ordered by
time instance t ∈ N, given as:

Yt = [yt,1, yt,2, . . . , yt,K ]ᵀ, (2)

where yt,k, k ∈ [1,K], denotes the kth signal in the time
series and ᵀ the matrix transpose operator. Notation-wise,
the time series is called univariate if K = 1 and multivariate
if K > 1, i.e., a vector valued time series. The behavior
of the time series is determined by the underlying process
that is observed. In the typical case, this process is an
unknown function that exhibits random properties. However,
tools for multiple time series analysis can be used to estimate
a function that mimics the properties of the process, which
in turn can be used to make time series predictions.

A classical approach to derive such a model is to assume
that the observed process is Vector Auto-Regressive (VAR),
implying that any state of the series can entirely be described
as a function of the previous states, see [13] and [14]. If the
function is linear, a VAR process of order p can be defined
as:

Yt =

p∑
i=1

AiYt−i +Wt, (3)

where the dependency on the p previous states is determined
by the weight-coefficients in the matrices:

Ai =


θ
(i)
1,1 . . . θ

(i)
1,K

...
. . .

...
θ
(i)
K,1 . . . θ

(i)
K,K

 . (4)

The process is driven by white noise Wt ∈ RK , with
E[Wt] = 0, E[WtW

ᵀ
t ] = Σ ∈ RK×K and E[WtW

ᵀ
s ] = 0 for

t 6= s.

A. The 1-step prediction model

As mentioned earlier in this section, the function de-
scribing the underlying process is typically unknown, i.e.,
the order p and the coefficients in Ai are unknown. A
common way to find a model that can accurately represent
the underlying process it to estimate a prediction model,
based on an initial guess on the model’s order d and the
time series observations, and evaluate how well the model
predicts the future state of the time series. The best model
is found by sweeping the value of the order d and compare
the result for each corresponding model.

Lets introduce a 1-step prediction model of order d given
as:

Ŷt+1 =

d−1∑
i=0

ÂiYt−i, (5)

where Âi are the estimates of the coefficient matrix and Ŷt+1

is the prediction for time instance t + 1 given observations
up to time instance t.

B. The h-step prediction model

An h-step predictor can be derived by using the 1-step
predictor (5), recursively, h times with a fixed t [15]. Hence,
after d prediction steps, the d + 1 prediction step is solely
a function of previous prediction steps, since observations
of the time series are only available up to time instance t.
The recursive model predicts every time instance up to t+h
and can be interpreted as a proper future path. An alternative
approach is to use the direct h-steps predictor expressed as:

Ŷt+h =
d−1∑
i=0

ÂiYt−i, (6)

where the t + h prediction is computed directly and purely
on observed samples. Note that the numerical values of Âi
are different in the two models (5) and (6). A limitation
with the direct model is that it only computes one future
sample, but in practise it is not a limitation for the application
under consideration in this paper, since the prediction model
is used within a receding horizon framework. Moreover, the
direct prediction model is more efficient in terms of real-time
computation and, in terms of predictive performance, both
prediction models have shown similar prediction errors for
various data sets, see [15], [16]. It is worth mentioning that
such literature considers different application domains other
than lane-keeping assistance, and therefore no comparison to
such works is provided in this paper.

C. The h-step prediction model based on multiple linear
regression

In the above prediction model, all historic samples of the
time series are sampled in consecutive order, with a uniform
sample rate determined by the sample time Ts. However,
the time series might be over-sampled, which means that the



difference between two consecutive samples is very small.
Hence, it might be hard to distinguish the contributions from
the signals and the embedded noise. If the signals in the time
series are sufficiently filtered, it is possible to down-sample
the time series without loosing any valuable information, as
long as the Nyquist sampling theorem is fulfilled. Hence,
the down-sampling increases the difference in magnitude
between two consecutive samples, which reduces the risk of
fitting the noise while estimating the model coefficients [17].

In this work, a modified direct prediction model is used,
which introduces sparse sampling of historic data. The sparse
sampling technique down-samples the time series in real
time by using a sample offset pattern, while maintaining the
original prediction frequency fs. Define an offset pattern as:

Γ = {γ0, γ2, ... , γd−1}, (7)

where γ corresponds to a time offset expressed in number
of samples and d the number of coefficient matrices. Note
that the offsets can be chosen freely1 as long as γi ≥ 0 and
γi remains unique in Γ.

Finally, the MLR direct prediction model with SHS can
now be expressed as:

Ŷt+h =

d−1∑
i=0

ÂiYt−γi . (8)

D. Model coefficient estimation
This section describes how the prediction model’s coeffi-

cient matrices Ai, as defined above, are estimated in closed
form using a sequence of sampled data. Rewrite (8) in a
matrix notation such that:

Ŷt+h = BZt, (9)

where,

B = [Â0, . . . , Âd−1] ∈ RK×Kd, (10)

Zt = [Y ᵀ
t−γ0 , . . . , Y

ᵀ
t−γd−1

]ᵀ ∈ RKd×1. (11)

Now assume there exist N observations of (Ŷt+h, Zt):

Y = [Yt+h . . . Yt+N+h] ∈ RK×N ,

Z = [Zt, . . . , Zt+N ] ∈ RKd×N .

The model coefficients is now found by solving the Least
Square (LS) problem:

arg min
B

1

N
||Y −BZ||2, (12)

which has the closed form solution:

B̂ = Y Zᵀ(ZZᵀ)−1. (13)

Observe that the LS problem consists of K equations that
can be solved independently. Let Y kt denote the k:th row
in Yt. This yields:

Y k = [Y kt+h, . . . , Y
k
t+N+h], (14)

1The definition in (7) allows for sparse sampling of the historic data.
Thus, old samples are not even forced to be considered in a consecutive
temporal order, which gives the designer the freedom to choose any desired
input pattern.

and compute the coefficients of the subsystem k as:

b̂k = Y kZᵀ(ZZᵀ)−1, (15)

where b̂k = B̂k.

IV. THREAT ASSESSMENT AND DECISION MAKING

This section covers the implementation details for the
proposed MLR path prediction model, as well as a kinematic
path prediction model used for benchmarking purposes. In
addition, details on the decision making algorithm as well as
the methodology for performance calibration are provided.

A. The direct MLR path prediction model

Consider a path prediction model based on (8) obtained
by using a multiple time series consisting of 13 signals. The
available signals at every time instance t are:

Yt = [al0, a
r
0, a

l
1, a

r
1, a

l
2, a

r
2, a

l
3, a

r
3, ω, δ, v, rw

l, rwr]ᵀ,

where the t notation for the signals has been omitted for
the sake of clarity. The goal is to predict the future distance
d�t+h with respect to the left and right hand side lane markers
h - steps ahead. The prediction model has then two outputs
that are linearly dependent on the signals in Yt, and can be
written as:

T̂t+h =

[
d̂lt+h
d̂rt+h

]
=

[
âl0,t+h
âr0,t+h

]
=

d−1∑
i=0

[
Â0
i

Â1
i

]
Yt−γi . (16)

Numerical estimates of the coefficient row-vectors Â0
i and

Â1
i can easily be obtained by using (15) twice.

B. Kinematic model

Kinematic models are popular since they are easy to im-
plement and fairly accurate under ideal conditions. However,
this type of models fall short in presence of dynamic driver
behaviours and are sensitive to measurement noise, as they
rely on signals from only one time instance. In this work, a
Constant Velocity (CV) model is used as a baseline for the
performance benchmark. It is worth mentioning that other
kinematic models, such as the CTRV model, are also fre-
quently used. However, empirical testing on the considered
data set, that mainly represents non-curvy roads, has shown
poor performance of the CTRV model for the lane-keeping
application. For this reason, the CTRV model is not a part
of this work.

1) Constant velocity model: The CV model computes the
future distance d�t+h based on the assumption that the lateral
velocity remains constant over the prediction horizon, see
Alg. 1. Such a model has its strengths in situations where
the road is fairly straight and the longitudinal speed varies
slowly, such as for the data set considered in this paper.



Algorithm 1 Predict the distance to the lane-marker h steps
ahead given a constant velocity.

1: procedure CV(vlongt , p�t , h, Ts)
2: ψ = d

dxp
�
t (0)

3: v�,latt = sinψvlongt

4: d�t+h = p�t (0) + v�,latt hTs
5: Return d�t+h

C. Decision making algorithm

Threat assessment and decision-making for a LKA system
consists of a prediction model that can foresee the future
risk of departing from the lane. Should the safety of the
vehicle and its occupants be at risk, an automatic steering
intervention is to be triggered, leading the vehicle towards
the center of the ego lane. For the sake of simplicity of the
language, these automatic steering interventions will be de-
noted, throughout the remaining of this paper, as activations.

In this scope, a path prediction model is used to predict
lane departures, which can be detected by checking whether
d̂lt+h ≤ τ or d̂rt+h ≤ τ is true, where the threshold
τ is a design parameter. Morevoer, for the performance
argumentation presented later in this paper, the test data set
Ct is used to compute the number of True-Positive (TP)
activations, i.e., how many activations are triggered when
needed, and the mean triggering time is denoted by t̄h for a
given τ . A TP is encountered if the prediction model detects
a true lane departure up to 2H seconds before the departure is
taking place. The False-Positive (FP) rate is computed using
the non-event set B given τ , where a FP is encountered if
an unwanted activation is triggered, i.e., any activation in
the non-event set B. Generally speaking, a well functioning
system has a high TP-rate (TPR) and a low FP-rate (FPR)
while maintaining a triggering timing close to the prediction
horizon t̄h ≈ H .

D. Calibration of the mean triggering time

A fair comparison between prediction models in terms
of TP rate and FP rate can only be achieved if they are
tuned to the same mean triggering time. Notice that, for a
perfect prediction model, the mean triggering time, obtained
for τ = 0, should be equal to H s. Unfortunately, in
practice, there are no such guarantees with respect to the
mean triggering time. However, the mean triggering time can
be calibrated to t̄h = H by adjusting the threshold τ . The
calibration is individually performed for every model using a
small calibration data set Cc, and comparable TP rate and FP
rate can be computed using a test set Ct with the calibrated
value of τ∗.

V. IMPLEMENTATION AND RESULTS

The MLR prediction model in (16) is implemented for
prediction horizons H = {0.5, 0.75, 1, 1.25, 1.5, 1.75} s and
for 5 different offset patterns defined as in (7).

See Tab. I for an overview of the simulation setup. The
depth indicates the oldest sample, in seconds, used in each
offset pattern. The first four offset patterns use historic

TABLE I
OFFSET PATTERNS USED FOR SPARSE SAMPLING IN HISTORIC DATA

Label offset pattern Depth [s]
Γ1 {0, 1, 2} 0.075
Γ2 {0, 1, 2, 3, 4, 5, . . ., 19} 0.5
Γ3 {0, 1, 2, 3, 4, 5, . . ., 39} 1
Γ4 {0, 1, 2, 3, 4, 5, . . ., 79} 2
Γ5 {0, 5, 39} 1

samples in an uniform sequence, while Γ5 is sampled with a
logarithmic spacing, sharing the same number of coefficients
as Γ1 but spanning the same historic depth as the Γ3. The
underlying idea with the logarithmic set is that it should be
able to balance the importance of the data given how old the
data is. Hence, it is biased to sample more recent information
in relation to older samples, which might be interpreted as
mimicking the vanishing importance of older information in
the brain of the driver.

In the following section, the performance of each model
will be assessed with respect to two aspects: i) the MSE
error, representing how accurate predictions are with respect
to the ground-truth path; ii) the efficiency of lane departure
predictions.

The MSE of the different models can be seen in Tab. II,
from where it can be concluded that a historic depth of
0.5−1 s is sufficient to provide increased performance. Fur-
thermore, it can be observed that the logarithmic model is the
best choice for most prediction horizons. It is worth noting
that a low MSE can be the result of good predictions in
normal driving conditions even if predictions might diverge
in critical situations, i.e., in cases of lane departures that
happen more seldomly.

From an application point of view, the prediction efficiency
relies on the combination of MSE error and the timing aspect
mentioned before. The mean triggering time for the models
can be seen in Tab. II for τ = 0, where many models
deviate from the designed target H . Hence, models have to
be calibrated before a fair comparison in TP rate and FP rate
performance can be derived.

From Fig. 2 it can be seen that all calibrated MLR
models, except for Γ4 at H = 0.5 s, outperformed the
calibrated CV model in terms of TP rates. The Γ1 model,
using only 2 × 3 × 13 coefficients, works well for 0.5 s
prediction horizon but its relative performance drops for
longer prediction horizons. The Γ4 model suffers from over-
fitting for a prediction horizon of 0.5 s, probably due to the
high number of coefficients (2 × 80 × 13). The logarithmic
sampled model Γ5, that shares the same memory depth as
the sequentially sampled model Γ3, yields similar TP rate
performances. For the prediction horizon 1.75 s, the MLR
model is approximately 18% better than the CV.

The difference in performance is more significant when
analysing the FP rate, see Fig. 3. The MLR models, except
for the Γ1, outperform the kinematic models for all prediction
horizons, where improvements of up to 34% can be seen for
1.75 s prediction horizon. The Γ1 model is under-performing



TABLE II
THE MEAN TRIGGERING TIME (τ = 0) AND MSE EVALUATED USING THE TEST SET Ct .

0.5 0.75 1.0 1.25 1.5 1.75
t̄0.5 MSE t̄0.75 MSE t̄1.0 MSE t̄1.25 MSE t̄1.5 MSE t̄1.75 MSE

Γ1 0.45 0.002 0.70 0.003 0.97 0.006 1.20 0.010 1.44 0.014 1.61 0.021
Γ2 0.41 0.001 0.71 0.002 0.91 0.004 1.26 0.007 1.43 0.011 1.1.65 0.017
Γ3 0.39 0.001 0.64 0.002 0.92 0.004 1.13 0.007 1.49 0.012 1.55 0.017
Γ4 0.44 0.002 0.72 0.003 0.98 0.005 1.13 0.007 1.48 0.012 1.63 0.018
Γ5 0.43 0.001 0.69 0.002 0.94 0.004 1.21 0.007 1.40 0.011 1.60 0.017
CV 0.45 0.002 0.74 0.005 1.03 0.010 1.31 0.017 1.62 0.029 2.28 0.051

Fig. 2. TP performance for different prediction horizons and offset patterns.

Fig. 3. FP performance for different prediction horizons and offset patterns.

with respect to the other MLR models and is even worse
than the reference model at H = 0.5, which indicates
that a memory depth shorter than 0.5 s is undesirable.
For the models Γ2 − Γ5 there is no significant difference
in performance. Interestingly, the logarithmic model Γ5 is
performing as good as the remaining others, which makes
it a preferable choice since it has the lowest number of
coefficients among the models with higher performance.
Therefore, the logarithmic model Γ5 will be used for the
rest of the discussion.

Fig. 4. An example of regular driving with a prediction horizon H = 1.5 s.
A lane departure is determined when the perimeter of the vehicle, denoted
by the green dashed line, exceeds the predicted lateral distance, illustrated
by the red and black lines. The blue line indicates the ground-truth (GT).
The CV based approach is falsely triggering interventions on the left hand
side at t = 7.8s.

In order to highlight the strengths and weaknesses of the
models, two representative cases are presented in Fig. 4 and
Fig. 5 and will be further discussed in the sequel. In both
figures: i) the lower panel presents the predicted distances
(solid lines) to the lane markers relative the sides of the
vehicle (represented by the horizontal dashed-lines in green);
ii) the upper two panels show the triggering behavior of a
decision-making algorithm (as detailed in Section IV-C), and
based on the different models described before.

A snippet from the non-event set B is depicted in Fig. 4,
exhibiting an example of a challenging driver behavior, that
does not however lead to a lane departure. One can see that
the driver has a wiggling driving style and is moving from
side to side within the lane. In this case, it is evident that
the kinematic model fails to capture the real risk of lane
departure, triggering a false intervention at t = 7.8 s, see the
upper panel of Fig. 4. On the other hand, the MLR model
succeeds to identify such a situation as non-threatening,
therefore not triggering any intervention as one would have
expected. These results support the previous argumentation
stating that the kinematic prediction models are prone to false
triggerings, which can be avoided in many situations by using
the MLR model.



Fig. 5. An example of a vehicle departing from the lane on the left side with
prediction horizon set to H = 1.5 s. The dashed black line in the two upper
panels represents the triggering target (based on ground-truth data), while
the solid line is the triggering based on the MLR prediction model. When
compared with the target triggering signal, both the kinematic CV model and
the MLR model, based on the offset pattern Γ5, trigger earlier interventions.
The oscillations in the predictions are due to that the prediction models are
uncertain for the relatively long prediction horizon.

An example of a lane departure event is shown in Fig. 5.
Both the MLR and the CV models trigger close to the
designed prediction horizon, but the MLR performs better
in terms of smaller deviations with respect to the ground-
truth path. It can be noticed that the triggering is oscillating
after the first triggering. This is not an issue in practise
since an automated steering maneuver is activated on the
first triggering instance, which lasts for several seconds and
affects the vehicle’s future behavior.

VI. CONCLUSION AND FUTURE WORK

A direct h-step multiple linear regression prediction
model, able to predict the lateral distances to the lane
markers, is proposed and validated using real world data. The
prediction model is used to detect unintended lane-departures
and is shown to outperform a traditionally used kinematic
model.

Future work could consider a thorough analysis of the
effects of sparse sampling patterns such as linear and log-
arithmic sampling. It is also of interest to compare the
performance of the linear prediction model presented in this
work with a non-linear model, e.g., a neural network, in order
to identify potential gains in terms of performance.
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