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Abstract–This article focuses on the traffic coordination problem at traf-
fic intersections. We present a decentralized coordination approach, 
combining optimal control with model-based heuristics. We show how 
model-based heuristics can lead to low-complexity solutions that are suit-
able for a fast online implementation, and analyze its properties in terms 
of efficiency, feasibility and optimality. Finally, simulation results for dif-
ferent scenarios are also presented.

I. Introduction

T
he road traffic system constitutes one of the cornerstones of mod-
ern society, but is burdened with several fundamental problems. 
In particular, as more vehicles are expected to enter the transpor-
tation system, traffic congestion and traffic accidents are pushing 

road infrastructure to its limits [1]. These problems are particularly 
pronounced at traffic zones where roads cross or merge, such as inter-
sections, roundabouts, and onramps [2], [3].

Even though intersections represent a small part of the entire road sys-
tem, they account for a significant part of traffic accidents. For instance, ac-
cording to a European report, 20% of fatalities within the last decade are said 
to be intersection-related in the EU [4]. Similar numbers have also been pre-
sented for the United States [5]. Therefore, intersection management is one 
of the most pressing and challenging problems. It is envisioned that emerg-
ing technologies such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure 
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communication (V2I), and vehicle automation can help miti-
gate performance and safety issues at intersections [6]. For 
example, communication among vehicles can avoid stop-
and-go traffic and provide augmented situational awareness. 
In combination with cooperative automation, vehicles could 
explicitly coordinate their actions in order to avoid collisions 
and optimize performance, thereby improving both safety 
and efficiency [7].

In general, there has been an increasing level of inter-
est in intelligent, autonomous control and decision-making 
algorithms, as they are expected to lead to a more efficient, 
comfortable and virtually accident-free traffic system. In a 
medium to long-term perspective, vehicles are expected to 
be able to drive autonomously and leverage their commu-
nication capabilities for cooperative perception, situational 
awareness, and ultimately path planning and control. How-
ever, such autonomous systems are naturally complex, as 
they rely on the interplay between sophisticated sensing, 
communication, and control units, see Fig. 1. For collision 
avoidance at intersections in particular, the technical chal-
lenges are numerous [7]. From the computational perspec-
tive, the underlying coordination problem is combinatorial, 
as it includes the determination of optimal crossing orders. 
From a control-theoretic point of view, the problem structure 
and size are continuously changing as vehicles enter and exit 
the traffic conflict zone. Hence, solutions need to be adapted 
and recomputed, so as to guarantee persistent feasibility. 

Finally, robustness to various sources of uncertainty must 
be considered, including model uncertainty, state (position, 
velocity, etc) uncertainty due to imperfect sensors or due to 
V2V and V2I communication (packet drops, random delays).

Several solutions have been proposed for conflict reso-
lution at traffic intersections [8]–[32]. For instance, rule-
based methods are addressed in [9]–[17], hybrid-systems 
based approaches in [18]–[21], and scheduling-based meth-
ods in [22]–[25]. Other works, instead, explore constrained 
optimal control techniques [12], [26]–[29]. For example, [12] 
utilizes a optimal controller combined with a first-come-
first-served policy, while [30] proposes a new paradigm 
transforming the problem from the original time domain 
to a space domain. Also, constrained, non-linear optimi-
zation techniques are used in [31], [32], assuming that a 
dedicated controller/infrastructure exists that is respon-
sible for computing the best maneuvers for all vehicles. 
Although general collision avoidance algorithms exist, 
they are limited by numerical complexity to handle small 
problems involving just a few vehicles. Also, most of the 
existing rule-based approaches lack formal analysis tools. 
Hence, recent works have tried to combine optimal control 
with heuristics and/or approximation-based approaches to 
design efficient decision-making procedures, that formally 
guarantee both performance and safety. For instance, [26] 
proposes a hierarchical decomposition of the problem in 
combination with approximations of the local cost func-
tions while [27], [33] impose a priority-based ordering, 
where vehicles solve local control problems based on the 
decisions made by vehicles with higher priority.

In this paper, we consider a scenario where multiple vehi-
cles need to autonomously coordinate through a traffic inter-
section in a decentralized fashion, see Fig. 2. We abstract from 
the communication, sensing and implementation aspects, 
and focus on the fundamental issues of the underlying con-
trol problem. We will build upon the results of [27],[33],[34] 
and combine optimal control with sequential decision mak-
ing. We will show how to use tools from reachability theory to 

Sensing
Provide
Perception
and Situation
Awareness 

Control
Agree on an Order
and Compute Optimal
Control Signals 

Communication
Process and
Transmit Information
on Vehicles and
Environment 

Fig 1 Illustration of the interaction between the different disciplines 
involved in autonomous conflict resolution techniques.



IEEE Intelligent transportation systems magazine  •  10  •  spring 2017

derive model-based heuristics and to coordinate the vehicles. 
The goal of this paper is to provide a comprehensive over-
view of our line of research, and to complement our previous 
works with further results and explanations.

The paper is organized as follows. First, we present in 
Section II the problem formulation. We then describe our 
control approach: a decentralized, sequential agreement 
solution is given in Section III, while Section IV presents a 
receding horizon strategy. Finally, simulations results are 
given in Section V, and a discussion and conclusions are 
presented in Section VI.

II. Problem Statement
We consider a scenario where multiple vehicles approach a 
traffic intersection and need to coordinate, as illustrated in 
Fig. 2. Our goal is to find the best individual control input 
trajectories that allow each vehicle to safely reach its des-
tination in finite time. Consider the discrete-time system:

	 ( ) ( ( ), ( )),x t f x t u t1+ = � (1)

where x X!  is the state of N vehicles moving on N differ-
ent paths, u is a vector of control inputs and f represents a 
linear function. The system is given by the parallel compo-
sition of N different systems:

	 ( ) ( ( ), ( )),x t f x t u t1i i i i+ = � (2)

describing the longitudinal dynamics of each vehicle, 
where [ ] :x p v RPX Vi i i

T
i i i

2#! 3= = , and u RUi i! 3 , 
{ , , }i N1N f! = , are the state and input vectors, respec-

tively, and ( )p ti  and ( )v ti  denote the vehicle’s position and 

velocity over the path iC , respectively. Hereafter, we will 
use the index i to denote i-th vehicle’s parameters, vari-
ables or vectors. For each vehicle i, the sets Ui  and Vi  
are respectively given as { : [ , ] }u u u uU min max

i i i i i!=  and 
{ : [ , ] }v v v vV min max

i i i i i!= . Moreover, given the model dy-
namics (2), we will denote by (· ))(t k+  the value of variable 
(·) at time t + k predicted at time t, where { , , , }k 0 1 2K f! =  
indicates the number of integer multiples of the discrete-
time step size tD . We assume that the path of each vehicle 
i is known, and that the intersection can be modeled as an 
interval [ , ]L Hi i  along each path, see Fig. 2. Note that the in-
terval [ , ]L Hi i  should be defined in such a way that the size of 
vehicles and the intersection itself are accounted for.

Our goal is to design a conflict resolution algorithm for 
avoiding side-collisions1, as they capture the major chal-
lenges and safety aspects of the coordination problem at 
intersections. We further assume that the initial condition 
of the multi-vehicle system is such that there exists at time 
zero a feasible control input solving the coordination prob-
lem, given the control structure proposed in this paper. We 
introduce the following definition.

Definition 1 (Critical set): L For each vehicle i N! , let 
Ci  denote the critical set, i.e., the set of all states corre-
sponding to positions along the i-th path where side-colli-
sions are possible and be defined as:

	 : [ , ] .x p L HC Xi i i i i i_ ! !" , � (3)

Hence, the set of all conflicting configurations represent-
ing a side collision is given as:

	 : { : ( , ) , , },x i j x x i jandR CS E Cn
i i j j7 !! ! ! != � (4)

where E  is the set of all pairs of indices , { , , }i j N1 f! . 
Therefore, safety is ensured if, for all vehicles i and j trav-
elling on intersecting paths:

	 ( ) [ , ] ( ) [ , ], .p t L H p t L H j ii i i j j j& 6" !! � (5)

In the following, we formulate the coordination problem 
within a constrained optimal control framework. Such a 
framework allows to conveniently accommodate perfor-
mance and safety arguments, and to leverage the formal 

1Even though not considered here, the proposed formulation could be ex-

tended to handle rear-end collisions between vehicles travelling in the same 

path. In this case, the set of all conflicting configurations S should be refor-

mulated to include all states for which vehicles in the same lane are closer 

than a prescribed safe distance. Thus, precedence conditions need to be in-

cluded in the optimization problems, and safety constraints to be reformu-

lated in a coherent way in order to guarantee perpetual safety. Note that in 

this case the set of feasible crossing orders is naturally constrained by traffic 

flow conditions, i.e., by the topological order of vehicles in the same path.

H1

H3

L2
L4

L3

L1

Γ3

Γ2, Γ4

Γ1

H2, H4

Fig 2 Illustration of the considered scenario. Several autonomous 
vehicles approach an intersection defined by a range of positions over 
pre-defined paths. Note that all safety conditions (5) are presented for 
cases where vehicle’s paths overlap. Naturally, if two paths do not overlap 
(e.g., vehicles 1 and 4), there is no collision threat.
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analysis tools available in the literature. Let the cost for 
vehicle i be generally expressed as:

	 ( , ) ( ( ), ( )),J X U x t k u t ki i i i
k

i i
0
K= + +

3

=

/ � (6)

where ( ( ), ( ))x t k u t ki i iK + +  is the stage cost, [ ( ),X x ti i
T=   

( ), ( ), ...]x t x t1 2i
T

i
T T+ +  and [ ( ), ( ),U u t u t u1i i

T
i
T

i
T= +   

( ), ...]t 2 T+  are i-th vehicle’s state and control trajectories, 
respectively. Finally, define the (closed) set of the i-th vehi-
cle’s admissible states before the intersection as:

{ : [ , ], [ , )},x v v v p L0X min max
i i i i i i i i! ! !X =

while /{ }X Ci i i i,Y X=  encloses the set of states beyond 
the intersection.

Assuming the presence of a central node in the network, 
functioning as coordinator, the centralized optimal coor-
dination problem can be formulated as follows:

	 ( , )min J X U
,U i

i
i

N

i i
1Ni !
=

/ � (7a)

( ) ( ( ), ( )), ,x t k f x t k u t k i k1
s.t.

N Ki i i i 6 6! !+ + = + +
�
(7b)

	 ( ) , ( ) , ,x t k u t k i kX U N Ki i i i 6 6! ! ! !+ + � (7c)

	 : ( ) , ,k x t k i kN Ki i7 3 61 ! ! !Y+ � (7d)

	 ( ) , .x t k kS K6" !+ � (7e)

Note that, if all vehicles reach in finite time a configura-
tion ( ) ,x t t i i 31! Y , then the coordination is said to be 
successful and deadlock-free, i.e., vehicles will eventually 
clear the coordination region.

The major challenge stems from the collision avoid-
ance constraint (7e), which renders the problem combi-
natorial. For a given initial configuration of vehicles, a 
multitude of feasible temporal crossing orders (i.e., differ-
ent orders in which one vehicle crosses the intersection 
before another) might exist, see Fig. 3. More precisely, for 
a scenario with N vehicles and N different roads, there are 

!N  different orders under which the vehicle’s can cross 
the intersection.

Unsurprisingly, the centralized problem as been shown 
to be NP-hard [35], [36] and therefore exact solutions be-
come intractable for practical problem sizes. Hence, either 
heuristics or approximations are needed for the design of 
efficient decision-making procedures that could be imple-
mented in real vehicles, guaranteeing both performance 
and safety in a critically time-constrained environment.

III. A Decentralized Solution Strategy
In this section we present an optimal control-based strat-
egy. We avoid the exponential complexity of the problem 

induced by the collision avoidance constraints (7e) through 
a heuristic, and present a coordination scheme that scales 
linearly with the number of vehicles. In particular, we in-
troduce the notion of a decision order [37], based on which 
we let the vehicles sequentially solve local optimal control 
problems. In this way, each vehicle avoids collisions by 
adapting to the already computed plans by vehicles pre-
ceding it in the order. Hence, our scheme consists of two 
stages: i) the selection of an order, and ii) the sequential 
computation of vehicle controls. We formally define the de-
cision order O  as follows.

Definition 2 (Decision order): Let { , , }N1N f=  be the 
set of vehicle indices. The decision order O  is a permuta-
tion of the indices in N . Denote with ( )O c  the c-th ele-
ment in the order, and let O i

b  and O i
a  be the sets containing 

the indices of all vehicles j i!  appearing before and after 
( )i O c=  in O  respectively.

Next, we detail the two steps of our approach. In Section 
III-A, we first formulate the vehicle level optimal control 
problems, and show how to solve them so that collision 
avoidance is guaranteed for a given order. In Section III-B, 
we present a heuristic based on reachability analysis tools.

A. Sequential Optimal Control
In this subsection we show how the sequential solution of 
optimal control problems, performed in a given order O , 
gives feasible (yet suboptimal) solutions to the coordina-
tion problem (7).

The main idea is explained as follows. Given an order O , 
the first vehicle in the order (with index ( )O 1 ) finds the 
optimal control action that takes it across the intersection. 

L2

L1 H1 p1
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x (0)
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Position Vehicle 1

Fig 3 Schematic illustration of a two vehicle collision. The red area contains 
the infeasible (forbidden) configurations, i.e., the set S  for a two vehicle 
system. The red trajectory illustrates the option where vehicle 2 crosses the 
intersection before vehicle 1, the blue trajectory the opposite case.
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The second vehicle in the order (( )O 2 ) solves two prob-
lems: one constrained to cross the intersection before 
vehicle ( )O 1 , one constrained to cross the intersection 
after. Of the two alternatives, vehicle ( )O 2  selects and 
applies the control action with the lowest cost. The third 
vehicle in the order, indexed ( )O 3 , similarly solves two 
problems, one constrained to cross the intersection be-
fore both ( )O 1  and ( )O 2 , and one constrained to cross 
the intersection after both ( )O 1  and ( )O 2 . More gener-
ally, the cth vehicle in the decision order, indexed ( )i O c= ,  
is required to solve:

■■ Problem A (Informal Statement): Finding the optimal 
control policy such that vehicle i enters the intersection 
only after all preceding vehicle(s) j O i

b!  have crossed 
the intersection.

■■ Problem B (Informal Statement): Finding the opti-
mal control policy such that vehicle i exits the inter-
section before any preceding vehicle(s) j O i

b!  enters 
the intersection.
To formalize Problem A and B, we first define the set of time 

instances during which a vehicle occupies the intersection.
Definition 3 (Occupancy times): For each vehicle i N! , 

the (expected) occupancy times of the intersection at time t, 
given an initial state ( )x ti  and a control sequence Ui , can be 
expressed as:

	 ( ), { : ( ) } .x t U k x t kI K Ci i i i i! != +^ h � (8)

For notation simplicity, throughout the rest of the paper 
we will consider Ii  as the shorthand form of ( ),x t UIi i i^ h. 
We also denote the union of the occupancy times of all pre-
ceding vehicles of vehicle i as

	 .Ii

j

j

O i
b

W =
!

' � (9)

Therefore, we have that:
1)	 For Problem A, the earliest intersection entry time for 

vehicle i is given by:

	 { } ,max ci
a

i
a

c i
p d= +

!W
� (10)

2)	 For Problem B, the latest intersection exit time for ve-
hicle i is given by:

	 { } ,min ci
b

i
b

c i
p d= -

!W
� (11)

where , Zi
b

i
a !d d + are parameters guaranteeing a time-

gap between two vehicles at the intersection. Problems A 
and B can then be formally defined as the two following 
quadratic programs (QPs):

Problem A1:

	 ( , )min J X U
U

i i i
i

� (12a)

	 ( ) ( ( ), ( )),x t k f x t k u t k k1
s.t.

Ki i i i 6 !+ + = + +
�

(12b)

	 ( ) , ( ) ,x t k u t k kX U Ki i i i 6! ! !+ + � (12c)

	 : ( ) ,k x t k k Ki i7 31 ! !Y+ � (12d)

	 ( ) ,x t 1i i
a

i!p X+ - � (12e)

	 ( ) ,x t Ci i
a

i!p+ � (12f)

Problem B1:

	 ( , )min J X U
U

i i i
i

� (13a)

	
( ) ( ( ), ( )),x t k f x t k u t k k1
s.t.

Ki i i i 6 !+ + = + +
�

(13b)

	 ( ) , ( ) ,x t k u t k kX U Ki i i i 6! ! !+ + � (13c)

	 : ( ) ,k x t k k Ki i7 31 ! !Y+ � (13d)

	 ( ) .x ti i
b

i!p Y+ � (13e)

In problems (12), (13), the state dynamics and the input, 
state and deadlock constraints are the same as in problem 
(7). The collision avoidance constraint (7e), however, has 
been replaced for the two problems by the constraints (12e), 
(12f) and (13e). Constraint (12e), (12f) force vehicle i to en-
ter the intersection after all higher priority vehicles have 
cleared it. Constraint (13e), instead, imposes clearing the 
intersection before the higher priority vehicles start enter-
ing it. Hence, constraints (12f) and (13e) require the i-th ve-
hicle state to belong to the sets Ci  and ic  at the time instants 
t i

ap+  and t i
bp+ , respectively. If v 0min

i $  in Vi  (vehicles 
cannot reverse), the position is monotonically increasing 
and the conditions (12f) and (13e) are sufficient to ensure 
that the vehicle i is outside the intersection within the time 
interval iW .

To complete the procedure, ( )N2 1-  QPs need to be 
solved. We emphasize that for a given decision order O , the 
actual crossing order is an implicit function of the sequen-
tial decisions made by the vehicles. More precisely, the pro-
cedure does not explore the combinatorial solution space, 
but uses the order heuristic to build up piece-by-piece the 
one solution that it outputs. Hence, the resulting control 
policy may no longer be the optimal solution of (7), but an 
approximation of it. Note, however, that the quality of the 
approximation is dependent on an appropriate definition of 
the decision order. We will discuss this aspect in the follow-
ing section.

B. Decision Order Heuristic
In this section we motivate and present a model-based 
decision heuristic for obtaining O , first proposed in [33]. 
Since the vehicles crossing the intersection could span 
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from compact cars to large trucks, the decision order 
heuristic needs to be designed such that the dynamics 
and constraints of the involved vehicles are considered. 
If not, a decision order might be defined such that, for 
instance, ten city cars are prioritized over a large truck. 
Since later vehicles are potentially forced to perform 
larger adaptations under the sequential scheme present-
ed in the previous section, the result might be undesir-
able or even infeasible.

For this reason, we proposed a model-based heuristic 
in [33]. This heuristic sorts the vehicles in ascending order 
based on the Time To React ( )Ui iD , which is defined as the 
time the vehicle has until it reaches a state from which it can 
no longer stop before the intersection. More precisely, based 
on models of the vehicles dynamics and their constraints, 
we use the intersections attraction sets, i.e., the set of states 
with positions before the intersection from which the exists 
no input that can prevent the vehicle from reaching the in-
tersection. We can formally define an attraction set Ai  as:

	
( ) : ( ) , ,

( , ) ( , )Pre
x t x t u1X F U

A F U F Ui i
r

i

i i i i i6! ! != +

=

" ,
�
(14)

where F  denotes a desired target set and Ui  the set of 
feasible inputs. In the previous equation, the Prer set can 
be defined using the reachable and controllable sets ex-
plained in [38]. In words, Ai  defines the set of states of 
system (2) which evolve into the target set F  in one time 
step for all possible control input signals u Ui i! .

Note that when (14) is applied recursively, a sequence of 
sets is generated satisfying the property that, once entered, 
the system is guaranteed to reach F  regardless of the input 
command. For collision avoidance at intersections, we are 
then specifically interested in computing ( , )A A U, ,i m i m i1- , 
where A ,i m  denotes the m-step attraction set and

	 ( , ) .PreA C U,i
r

i i1 = � (15)

An illustration and interpretation of the attraction set is 
given in Fig. 4. Note that both Ci  and , ,m iA N,i m 6 !  are 
time invariant sets, and can therefore be computed offline.

Given a control vector Ui  we define the time to react 
( )Ui iD  as the time until an attraction set is reached. For-

mally, we have

( ) { : ( ) , } .minU k x t k u 0K A ,i i i i m i! !D = + =

The vehicles in the decision order O  is thereafter sorted by 
ascending values of ( )Ui iD , i.e., such that:

( ) ( ) ( )

(
( ) ,

( ) .

) ,

U U U

i
j

n

O

O

O

i i j j n n

N

2

1

&f
h

1 1 1D D D

=

=

=

Z

[

\

]
]

]]

In other words, highest priority will be given to the vehicle 
closer to its attraction set (i.e., the vehicle with the lowest 

iD  value), then to the vehicle with the second smallest iD
and so on. The reader can refer to [33] for further details.

It is worth mentioning that alternative heuristics to de-
termine the decision order O  exist. For instance:

■■ First In First Out (FIFO) protocols, also known as first-
come-first-served, were considered in [39], [40]. Such 
policy favours vehicles very close to the intersection or 
those travelling at high speeds.

■■ Distance to intersection, as in [41]. Such algorithm has 
the advantage of handling closer vehicles first, while 
keeping far-way vehicles at the end of queue.

■■ Traffic rules that govern interactions between vehicles, 
motorbikes and pedestrians. They result from the inter-
play between human drivers, signal infrastructure and 
lane markings, and constitute themselves a heuristic 
way of finding a solution to the coordination problem 
(7). A basic rule of today’s traffic legislation is, for in-
stance, the priority to the right.

■■ Random orders considered in [37], for instance, in the 
context of conflict resolution in air traffic control. Such 
protocols may, however, easily compromise feasibility, 
as consecutive decisions under different orders may be 
contradictory and render the system unsafe.
Nevertheless, all of the above mentioned criteria neglect 

actuation and dynamic constraints, unlike the proposed 
model-based heuristics. For a more thorough discussion on 
decision order heuristics, we refer the reader to [34].

IV. A Receding Horizon Approach
In Section III-A, we showed how the solution to problem 
(7) can be approximated as the combination of N2 1-  de-
coupled infinite horizon optimal control problems. But con-
strained infinite horizon problems cannot be easily treated 
in practice. However, the problem structure provides a 

vi

Li Hi pi

vdi
xi (t ) xi (t +k )

Ωi

vi
max

vi
min

Ai 2
Ai 1 Ci ϒi

Fig 4 For vehicle i, illustration of the critical set C i , the sets iX  and ,iY  
and the attraction sets A i . Here, ( , )AA C Ui i i i1 = , where the target set 
is the intersection area C i . Starting from all positions and velocities 
within the green set A i1 , the vehicle will enter the intersection in one 
time step. By iterating the computation of (., .)Prer , one can then 
compute the j-step attraction set ( , ), j 1A A A U( )i j i i j i1 2= - , until the 
back propagation of ( , )A F Ui i  eventually results in an empty set.
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natural way to decompose the problem into smaller, eas-
ily solvable subproblems. In order to illustrate such de-
composition, we introduce in this section an additional 
approximation to problems (12) and (13). We further show 
how the coordination is done in closed-loop using a reced-
ing horizon scheme, and thereafter discuss the conditions 
under which the closed-loop coordination controller gives 
feasible solutions.

A. Problem Reformulation
Problems (12) and (13) can be compactly written as follows:

	 ( , )min J X U
U

i i i
i

� (16a)

	
( ) ( ( ), ( )),x t k f x t k u t k k1
s.t.

Ki i i i 6 !+ + = + +
�

(16b)

	 ( ) , ( ) ,x t k u t k kX U Ki i i i 6! ! !+ + � (16c)

	 : ( ) ,k x t k k Ki i7 31 ! !Y+ � (16d)

	 ( ) ,x t M Fi i!+ � (16e)

with, respectively, ,M F Ci
a

i ip= =  and ,M Fi
b

i ip Y= = . 
As mentioned before, conditions (12f) and (13e) are suffi-
cient to ensure that the vehicle i is outside the intersection 
within the time interval iW . Hence, no particular safety re-
quirements apply anymore after t i

ap+  and t i
bp+  for the 

local problems A1 and B1, respectively. Therefore, problem 
A1 can be seen as the combination of:
1)	 an optimization problem, defining a collision-free tra-

jectory up to time t i
ap+ ;

2)	 an optimization problem, defining the trajectory for all 
times after t i

ap+ .
The same holds for problem B1, if one replaces t i

ap+  by 
t i

bp+  in the previous statements. An illustration is given in 

Fig. 5. In the following, we consider a particular cost func-
tion ( , )J X Ui i i , that is equal to all vehicles i and given as:

	
( ( ), ( ))

| | ( ) | | | | ( ) | | ,
x t k u t k

v t k v u t k
i i i

i d Q i R
2 2

i i i

K + + =

+ - + +
�

(17)

�

where R 0i (  and Q 0i *  are weights penalizing the con-
trol signal and the deviation of the vehicle’s speed from 
the desired value, respectively. Note, however, that differ-
ent metrics can be used. Define { , , , }M0 1KM f= . For a 
general M and Fi , the subproblems 1) and 2) are defined  
as follows:

	 ( , )min J X U
U

i
f

i i
i

� (18a)

( ) ( ( ), ( )),x t k f x t k u t k k1
s.t.

Ki i i i M6 !+ + = + +
�

(18b)

	 ( ) , ( ) ,x t k u t k kX KUi i i i M6! ! !+ + � (18c)

	 : ( ) ,k x t k k Ki i M7 31 ! !c+ � (18d)

	 ( ) ,x t M Fi i!+ � (18e)

defining the optimal trajectories up to a time ( )t M+  with

( , ) ( ( ), ( )) ( ),J X U x t k u t k J t Mi
f

i i i
k

M

i i i
0

*

K= + + + +3

=

/

where ( )J t Mi
*

+3  represents the cost-to-go and corre-
sponds to the following optimization problem:

	 ( ) ( , )minJ t M J X Ui
U

i i i
*

i
+ =3 � (19a)

s.t.�
	 ( ) ( ),x x t M0 i= + � (19b)

	 ( ) ( ( ), ( )),x t k f x t k u t k k1 Ki i i i 6 !+ + = + + � (19c)

	 ( ) , ( ) ,x t k u t k kX U Ki i i i 6! ! !+ + � (19d)

	 : ( ) ,k x t k k Ki i7 31 ! !Y+ � (19e)

that determines the optimal trajectories after time ( ) .t M+  
Note that problem (19) corresponds to a constrained linear 
quadratic regulator (LQR), for which no safety constraints 
are imposed. Moreover, and assuming that the stage cost 
function penalizes deviations from the desired speed as in 
equation (17), problem (19) is reduced to a simple velocity 
regulator. Hence, its solution is a piecewise affine function of 
the velocity and the associated cost function piecewise qua-
dratic, see Fig. 6.

However, finding a solution to (18) with a piecewise 
quadratic cost-to-go function is a hard problem to solve. 
To address this, a quadratic approximation can be used 
to upper-bound the explicit solution of (19), as shown in 

Li Hi pi

vi

vdi

vi
max

vi
min

Finite-Time Solution

Infinite-Time Solution Problem A2 = “Going After”

Problem B2 = “Going Before”

xi (t+ξi
a)

xi (t )

Ci
Ωi xi (t +ξi )b

ϒi

Fig 5 Illustration of the proposed control strategy. Each local problem is 
decomposed as: a finite-time optimization problem guaranteeing collision 
avoidance; an infinite-time control problem defining the cost-to-go.
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Fig.  6. The approximated cost function is then simply 
given as:

    
( ( )) ( ) ( )

( ) ,
J x t M x t M P x t M

v P x t M v P v2
i i i

T
i

di
T

i di
T

di

+ = + +

- + +

3
3

3 3

)t
�

(20)

where vdi is the desired speed and P3  the upper-bounding 
quadratic approximation, see Fig. 6. In this case, problem 
(18) given the cost-to-go function (20) becomes a standard 
constrained, finite-time optimization problem with a ter-
minal cost that can be easily solved. Note that the explicit 
cost function and feedback control map corresponding to 
(19) can be computed offline using multi-parametric con-
trol tools, and therefore also the approximated cost func-
tion. This allows us to reduce the computational load and 
to derive a control approach suitable for fast online imple-
mentation. The reader can refer to [38] for further details.

We will show now how to compute an approximation 
to the infinite horizon optimal problems A1 and B1. More 
precisely, each local problem is formulated as a finite time 
horizon problem where safety is enforced as terminal con-
straints, given a quadratic upper-bound of the optimal 
cost-to-go function. In a similar way as before, the optimal 
control signal allowing a given vehicle to cross the inter-
section before or after the remaining vehicles can be re-
trieved by solving the two following problems:

■■ Problem A2:
■■ Offline:

	 Solve (19) and obtain the explicit feedback 
control map and cost function;

■■ Online:
	 �Solve (18) with the cost-to-go function (20) 

and M i
ap= , and F Ci i= ;

■■ Problem B2:
■■ Offline:

	 Solve (19) and obtain the explicit feedback
	 control map and cost function;

■■ Online:
	 Solve (18) with the cost-to-go function (20) 

and M i
bp=  and Fi iY= ;

In practice, the infinite time optimal solution to these 
problems corresponds to the optimal solution U*

i  of prob-
lem (18) applied up to t + M, complemented with the explicit 
(and offline computed) solution of (19) from this instant 
onwards. An illustration is provided in Fig. 7.

B. Receding Horizon Control
In order to find a solution to the infinite dimensional prob-
lem (18), a receding horizon computational scheme can be 
used. More precisely, at every sampling time, a finite time 
optimization problem is solved and only the first element of 
the computed control input sequence is applied. At the next 
time step, the problem is formulated and solved again over 
a shifted time horizon [38].
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A sketch of the receding horizon implementation of our 
sequential approach is presented in Algorithm 1 and il-
lustrated in Fig. 8. It can be explained as follows. Given a 
cooperatively defined order defined at time t, every vehicle 
in O  solves problems A2 and B2 (if feasible), and obtains 
the optimal solution U *

i  with the lowest associated cost 
( , )J X U*

i
f

i i . The first element of U *
i  is applied and the ex-

pected occupancy times corresponding to that control sig-
nal transmitted to following vehicles in the decision order. 
Once all N vehicles have chosen their optimal trajectories, 
the procedure is repeated at next time instant, yielding a 
receding horizon control scheme.

Note that our approach reduces the communication 
burden, as vehicles are only required to transmit the ex-
pected occupancy interval to the following vehicles. More-
over, when implemented in a receding horizon fashion, the 

prediction horizon of the online part of (18) shrinks at each 
time step, and will eventually vanish as vehicles reach the 
intersection. This yields that the solution of the local prob-
lem will eventually converge to the explicit solution of (19), 
that has been computed offline.

C. Feasibility Analysis
Since constraint (18e), with M i

ap=  and F Ci i=  for prob-
lem A2 and with M i

bp=  and Fi ic=  for problem B2, is suffi-
cient to ensure that each vehicle i is outside the intersection 
within the time interval jW , the feasibility of a decision or-
der is then characterized by the capacity of each vehicle of 
reaching Ci  in i

ap  steps and/or the set ic  in i
bp  steps.

Let the one-step (forward) controllable set to the set 
F Xi3  be defined as [38]:

	
( ) : ( ) .

( , ) : ( , )Pre
x t u x t 1s.t.

K

X U F

F U F Ui i i

i i i i i7! ! != +

=

" ,
�

(21)

Moreover, the R-step controllable set ( , )K F Ui
R

i  is re-
cursively given as:

( , ) ( ( , )) , ( , ) ,K Pre K KF U F U X F U Fi
m

i i
m

i i i i
1 0+_ =-  

� (22)

where { , , }m R1 f! . For notation simplicity, ( )K Fi
R  will 

be used as the shorthand form of ( , )K F Ui
R

i . The following 
conditions on the feasibility of a decision order hold.

Proposition 1 (Local feasibility): Let vehicle i N!  be 
driven by dynamics (2) and ( )x t Xi i!  be the state at time t.  
Given a decision sequence O , vehicle ( ) ,  i c 1O c 2=  has a 
feasible solution if and only if at least one of the following 
conditions is satisfied:

	 ( ) ( , ),Kx t C U( )
i i

t
i i

i
a

!
p - � (23a)

Measure States
and Compute ∆i

Compute
Decision Order O

(O)1 (O)2 (O)3
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Cooperative Priority Assignment

Transmitted Information Between Vehicles

Problem A2
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or
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Fig 8 Illustration of the proposed sequential coordination approach. Initially, vehicles cooperatively agree on a decision order based on, for example, the 
model-based heuristics proposed in [33]. This enables a sequential decision-making procedure, where each vehicle solves two local problems and 
transmits over wireless communication links the expected occupancy times to the remaining vehicles.

Define a decision order O .
For vehicle ( )i O c= , where c > 1:

measure the state ( )x ti  at time t ;
collect , jI Oj i

b6 ! ;
compute i

ap  and i
bp ;

verify feasibility of Problem A2 and B2 (eq. (23a), (23b))
if � ( ) ( , )Kx t C U( )

i i
t

i i
i
a

!
p -  and/or ( ) ( , )Kx t U( )

i i
t

i i
i
b

! Yp -  
solve Problem A2 and/or Problem B2; 
compare ( , )J X U*

i
f

i i  and choose the solution U *
i  with 

the lower cost; 
apply the first element of U *

i  to the system;
else Trigger a mitigation maneuver (e.g., emergency braking)
broadcast the expected occupancy intervals I i  to all
elements of ;O i

a

wait for the new sampling time t + 1 and new measurements

Algorithm 1 Receding horizon implementation



IEEE Intelligent transportation systems magazine  •  16  •  spring 2017 IEEE Intelligent transportation systems magazine  •  17  •  spring 2017

	 ( ) ( , ) .Kx t U( )
i i

t
i i

i
b

! Yp - � (23b)

It follows from definition (22) that if condition (23a) is sat-
isfied, then u Ui i7 !  such that vehicle i can enter Ci  in 

i
ap  steps. On the other hand, if condition (23b) is satisfied, 

then there exists a feasible control input that can drive the 
system to the target set iY  in i

bp  steps. Thus, if one of these 
conditions is satisfied, there exists at least one feasible con-
trol sequence satisfying the safety constraints (18e).

Proposition 2 (Global feasibility): Consider a set of N sys-
tems driven by dynamics (2) such that ( )x t X! . At time t, 
a decision order O  is feasible if and only if Proposition 1 is 
satisfied for each vehicle ( ) ,  c 1O c 6 2 .

In an identical way as in the definition of the model-
based heuristics presented in Section III-B, Propositions 1 
and 2 exploit reachability tools to verify feasibility condi-
tions. Given the time-invariant nature of Ci  and Ui , the 
derivation of the backward controllable sets ( , )K C Ui

R
i i  

can be locally pre-computed and kept as a look-up table, 
for instance, turning the feasibility analysis into set-mem-
bership tests. Note that if none of the previous conditions 
is satisfied, a collision cannot be avoided by the proposed 
approach. Hence, collision mitigation solutions must be 
applied as, for example, emergency braking or steering 
manoeuvres. Note, however, that mitigation solutions are 
beyond the scope of this paper.

V. Results
In this section we present results that demonstrate 
the control principles described in previous sections. 
Throughout several scenarios, we discuss efficiency, fea-
sibility and optimality aspects of the proposed algorithm. 
We consider an intersection scenario as illustrated in 
Fig. 2, for which the simulation settings are summarized 
in Table 1. The dynamics along the paths of all vehicles 
are taken as

	 ( ) ( ) ( ),x t A x t B u t1i i i+ = + � (24)

where ;A 11 01=6 @ and B 01 T=6 @ . Furthermore, we 
consider that as part of the assigned driving task, each 
vehicle i has a known, constant reference/desired ve-
locity denoted by v Vd ii ! , and initial state given by 

( ) [ ( ) ]x p v0 0i i di
T= . The control bounds are non-identical, 

i.e., , ,i jU U Ni j 6! ! , and the safety parameter d  is 
equal to [ ] [ ]11b a T Td d d= = .

A. Efficiency
Consider a collision scenario involving vehicles 1, 2 and 3 
from Table 1. In absence of a suitable avoiding maneuver, 
a collision may occur for [ ], [ ]t 10 24! . Take a decision or-
der O  defined according to the individual Time to React 

( )Ui iD , as proposed in [33]. This yields a higher priority 

to vehicles with a lower ( )Ui iD , i.e., an order { , , }1 3 2O = . 
The reader can refer to [33] for further details.

Fig. 9 shows the resulting trajectories according to the pro-
posed sequential control strategy, in accordance to Algorithm 1. 
The costs associated with each local control problem A2 and 
B2 are presented in Table 2. In this figure, the critical set Ci  is 
represented by the horizontal red lines while the black dashed 
lines represent the entrance and exit times, therefore defining 

, iI Ni 6 ! . As one can observe, collisions are avoided (i.e., 
the different Ii  never intersect) and vehicles reach, safely and 
in finite time, their destination iY . In accordance to the Algo-
rithm 1, vehicle 1 follows its predefined motion profile, cross-
ing the intersection in the interval [ ], [ ]t 12 17! . It follows 

Parameters Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4

Initial state (4,8.2) (5,5.95) (70,3.3) (8,5) 

Li  [m] 100 100 100 100 

Hi  [m] 150 150 150 150 

I i  [s] 12–17 16–24 10–24 19–29 

iT 8 15 10 18 

umini  ][ /m s2  .0 3- 1- 2- 3-

umaxi  [ /m s2 ] 0.3 1 2 2 

Table 1. Settings and parameters.
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Fig 9 Trajectory evolution for a three vehicle collision involving vehicle 1, 
2 and 3 from Table 1, according to the proposed sequential approach and 
for an order { , , }1 3 2O = . The intersection is represented by the 
horizontal red lines while the grey dashed lines delimit , iIi 6 .

Vehicle 
Cost of (19)
Cost–to–go Cost of (18) 

2 . 2
. 2

Prbl A
Prbl B

3.86
-

371.81
3

3 . 2
. 2

Prbl A
Prbl B .

2.48
13 82 .

57.03
234 43

�Table 2. Optimality analysis: costs associated with the local  
   problems A2 and B2 for a decision order { , , }O 1 3 2= . 
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from Table II that the solution with the lowest cost for vehicle 3  
is to decelerate and wait until vehicle 1 exits the intersection. 
This yields that [ ], [ ]18 33I3 = , as seen in Fig. 9. Finally, ve-
hicle 2 crosses the intersection for [ ], [ ]t 34 43! , i.e., after the 
two previous vehicles. Note that, as shown by the Table II and 
the feasibility tests presented in Fig. 11, decelerating and cross-
ing last the intersection is in fact the only feasible solution, as 
vehicle 2 is incapable of reaching its destination earlier with-
out violating safety constraints.

B. Feasibility
Clearly, the number of feasible crossing orders decrease 
as the vehicles get closer to the coordination zone, since a 
larger part of the combinations are ruled out by the vehicle 
dynamics, state and input constraints. Though one is natu-
rally interested in starting the coordination procedure as 
early as possible, whenever vehicles are within communi-
cation range, it may occur that by the time vehicles estab-

lish communication several decision orders should already 
be discarded.

Previously, we shown how the proposed control strat-
egy can be effectively applied to a three-vehicle system, in 
particular when the decision order is established with re-
spect to the ( )Ui iD . In order to support our claims on the 
pertinence of this model-based heuristics, we will analyze 
in the sequel different decision orders and their feasibility 
properties. Our goal is to highlight the merits of the pro-
posed model-based heuristics for a sequential decision-
making procedure.

Consider a collision scenario involving vehicles 1, 2 and 3. 
Table 3 summarizes the feasibility results for different or-
ders. According to Proposition 2, only the decision order 

{ , , }mathcalO 1 3 2=  defined with respect to Δi is globally 
feasible, while all remaining orders are locally infeasible for 
vehicle 1. In other words, both problems A2 and B2 do not have 
a solution, as illustrated in Fig. 10. For an order { , , },3 1 2O =  
vehicle 1 is unable to cross before or after vehicle 3, i.e., 
( ) ( , )x t K U1

9
1 1" c  and ( ) ( , )x t K C U1

25
1 1"  in Fig. 10.  

On the other hand, for { , , }3 2 1O =  ( ) ( , )x t K U1
9

1 1" c  and 
( ) ( , )x t K C U1

34
1 1"  in Fig. 10. This means that vehicle 

1 is unable cross the intersection either before vehicle 3 
or after vehicles 3 and 2. Note that for this particular case 
the sets ( , )K C U1

25
1 1  for { , , }3 1 2O =  and ( , )K C U1

34
1 1  for 

{ , , }3 2 1O =  overlap exactly in Fig. 10.
For the considered examples, Table III and Fig. 10 

highlight the potential advantages of the proposed mod-
el-based heuristics in terms of feasibility. An exhaustive 
analysis of the impact of the heuristics’ choice on the 

Criteria Δi ( )p t Li i< <- FIFO 

Order O  {1, 3, 2} {3, 2, 1} {3, 1, 2}

Feasibility Feasible Infeasible Infeasible

�Table 3. Feasibility analysis according to Proposition 1 and 2,  
   for different decision criteria. 
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Fig 10 Feasibility constraints verification for vehicle 1, for a collision 
scenario involving vehicles 1, 2 and 3 from Table 1 for an order 

{ , , }3 1 2 O =  defined with respect to a FIFO algorithm, and for an order  
{ , , }3 2 1O =  defined with respect to the distance of the intersection 

|| ( ) | |p L0i i- . Here, the current state is represented by the red dot. The 
sets ( , )K U1

9
1 1X  and ( , )K C U1

25
1 1  correspond to an order { , , }3 1 2O = , 

while the sets ( , )K U1
9

1 1X  and ( , )K C U1
34

1 1  to an order { , , }3 2 1O = .

Feas. Vehicle 2 of Crossing Before
Feas. Vehicle 2 of Crossing After
Current Position

Position (m)

0

5

10

15

V
el

oc
ity

 (
m

/s
)

0 50 100 150 200

K 34(C2)2
K 11(γ2)2

Fig 11 Feasibility constraints verification for vehicle 2, for a collision 
scenario involving vehicles 1, 2 and 3 from Table 1 and for { , , }1 3 2O = .



IEEE Intelligent transportation systems magazine  •  18  •  spring 2017 IEEE Intelligent transportation systems magazine  •  19  •  spring 2017

feasibility properties of the control algorithm is currently 
under consideration.

C. Optimality
Now we analyze the optimality properties of the proposed 
sequential approach when compared to the optimal solu-
tion of the centralized coordination problem (7).

Consider Table 1. We take as example two collision sce-
narios: (i) a conflict between vehicles 2 and 4, see Fig. 12; 
(ii) and a conflict between vehicle 3 and 4, see Fig. 13. In 
both figures, we present the vehicles’ position trajectories 
both for the centralized problem (7) (blue line) and the 
sequential approach presented in Section IV-B (red line). 
In particular, Fig. 12(a),13(a) consider a decision order 
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Fig 12 Trajectories of vehicle 2 and 4: original profile in green, centralized solution in blue and the sequential solution in red for an order { , }2 4O =  
defined according to Δi in subfigure (a) and { , }4 2O =  in subfigure (b).
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defined with respect to ( )Ui iD , i.e., { , }2 4O =  and { , }3 4O = ,  
respectively, while Fig. 12(b), 13(b) assume a decision or-
der defined according to the distance to collision [41] and 
to right-hand priority rules, respectively. See Section III-B.

In both figures, one can see that for different heuristics 
the resulting crossing order is inverted. Indeed, while in 
Fig. 12(a), 13(a) the model-based heuristic approach pro-
vides an identical crossing order to the one resulting from 
the implementation of the (centralized) optimal solution of 
(7), the crossing order is inverted when different decision 
criteria are considered. Most important, the difference in 
terms of optimality for different orders is striking. Though 
formal sub-optimality bounds are still to be provided, 
these results show however that, for the considered exam-
ples, the optimality gap between the centralized approach 
and the proposed sequential scheme is reduced.

VI. Conclusions
In this paper, we presented our recent works on cooperative 
conflict resolution approaches. We first described a model-
based heuristic, conveniently translating into the decision 
order a comprehensive description of the conflict itself. We 
then formulated and analyzed the coordination problem 
within an optimal control framework, where the decentral-
ized solution of the local optimization problems is divided 
in two parts: a finite-time problem where collision avoid-
ance is enforced as terminal constraints, and an infinite 
horizon problem defining the cost-to-go that can be calcu-
lated offline. Though sub-optimal by design, the proposed 
solution offers several advantages, trading off optimality 
with low complexity and scalability. First, the per vehicle 
complexity with respect to the number of vehicles remains 
constant since collision avoidance is enforced through lo-
cal state constraints at two specific time instants. Second, 
the proposed structure can be cast into a receding horizon 
framework, partially relying on the explicit solution of an 
optimization problem. Finally, simple feasibility conditions 
can be derived by leveraging reachability tools. We also pre-
sented several results (for a variety of collisions setups and 
problem sizes) and discussed optimality, efficiency and fea-
sibility of the proposed algorithm.

The extension to more complex scenarios is non-trivial and 
is ongoing. In particular, we are currently working on exten-
sions so one can formally include rear-end collision avoidance 
between vehicles on the same lane, or to handle continuously 
traffic flows. Such cases require the adaptation of the current 
approach, as the information given by the occupancy intervals 
is no longer sufficient to avoid rear-end collisions.
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