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Abstract: This paper deals with the double integrator consensusgmoblhe objective is the design of

a new consensus algorithm for continuous-time multi-aggstems. The dynamic of agents is assumed
to be of double integrator type. The proposed algorithmictems that there are no sensors to measure the
velocity of the agents. Thus the classical double integra@asensus algorithm leads to an oscillatory
behavior if the communication graph is undirected and ttaiifity if the graph is directed. The novel
algorithm proposes to sampled, in an appropriate manngmptne multi-agent systems state such that
the algorithm converges. An expression of the consensugleaqum is provided. Some examples are
provided to show the efficiency of the new algorithm.
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1. INTRODUCTION integrator via a transformation in their control law. Butudbe
integrator algorithms leads to several problems (Ren [PO08

Network control systems (NCS) are spatially distributed-sy (Ren and Cao [2008]). For instance, if the graph is directed,
tems with a communication network used between sensofgg algorithm is not stable, and on the other hand, if thetgrap
actuators, and controllers, witch allows flexible architees is undirected, this requires the knowledge of both positiod
and generally reduces installation and maintenance carsts, Velocity to converge to the same value. In this paper, weigeov
identifies control over networks as one of the key future di@ novel consensus algorithm based on sampling approach, sin
rections for control. This means NCS’s applications can bé&s known that for some systems delays have a stabilizing
found in a large range of areas such as mobile sensor netwoBkgperty (Michiels et al. [2004]), and sampling can be sexa a
(Ogren et al. [2004]), remote surgery, haptic collaboratioparticular delayz (t) =t —t (Fridman et al. [2004]). A method
over Internet, multi-robot systems (Olfati-Saber and Muyrr to design the algorithm parameters, including the appatedli
[2004]), automated highway systems, averaging in commurfidmpling period T, on a "optimal” way is proposed based on
cation networks (Xiao and Boyd [2003]) and formation cohtroa LMI's formulation. The communication graphs are supposed
(Dimarogonas and Kyriakopoulos [2008]). Several resudigeh t0 be directed and undirected. The new algorithm offers sev-
appeared in recent literature that consider systems wifiardi €ral advantages, since it drastically reduce informaticamtjty
ent motion models, symmetry of communication and networkeeded for control or quantity of sensors needed, witch siean
interactions. A recent review of the vast literature in theddfi ©conomical, space and calculation savings.

can be found in Olfati-Saber et al. [2007], Hespanha et afyis paper is organized as follows: Section 2 presents ibie-pr
[2007] and Ren et al. [2005]. lem treated in this article. Section 3 will be dedicated te th
We consider a "consensus” algorithm (or protocol) as an irestablishment of the appropriated model, and in Section 4 we
teraction rule that specifies the information exchange eetw Will proceed to stability analysis of the algorithm. Seatt®in-

an agent and all of its neighbors over the network in order tgudes illustrating simulation results and performancaysis,
reach an agreement regarding a certain quantity of intérast and finally, Section 6 will present our conclusions and iatéc
depends on the state of all agents. However, the use of asshap@ssible future research efforts.

network introduces new challenges, such as delays over Co'ﬂiroughout the paper, the superscript stands for matrix

m.unications, paqket losses or even communication blackoﬂtanspositionR“ denote then-dimensional Euclidean space,
witch can dramatically affect "consensus” convergenceaat . 4pn<mis the set of x mreal matrices. The s&f stands for

cooperative control laws efficiency (Muenz et al. [2010Rr8, e set of symmetric matrices Bf*". | represents the identity
we condsuljerr'ghat agdenlt? arehasgurr]ned to ?beyla dt;)uble NGk, Finally, for any matrixM, the notation(M); denotes
tor model. This model fits the behavior of real robotic agentg. .th |; ’ ’ b

. . eit" line of M andAy(M) represents the" eigenvalue oM.
more naturally, since such mechanical systems are coamiroll.l.he notation|.| corresponds the Euclidean norm and, for any

in most cases through their acceleration and not their itgloc : o n .
Moreover, several robotic systems can be reduced to a douﬁgzlﬁn(p o.] |£p(g,)| 0] — R, the notatiorj¢|; corresponds to
e|-T, .

* This work was supported by the European Project FeedNetBack
http://www.feednetback.eu/.



For the graphG with N vertices and edge set given By=  However it is important to put forward the technical advaets
{(i,j) : ] € A} the adjacency matrix A= A(G) = (&j) is  of this assumption: by supposing= 0, we reduce drastically
the N x N matrix given byajj = 1, if (i,]j) € E andajj =0, the information quantity needed for the control laws, and in
otherwise. If there is an edge connecting two verticgsi.e. a technical point of view, no velocity sensors are needed but
(i,]) € E, theni, j are callecadjacent If there is a path between only sensors to get the agent’s position. This means ecaabmi
any two vertices of the grapls, then G is called strongly space and calculation savings.

connectedn the case of directed, and simptgnnectedn the

case of undirected graphs. Tthegree gof vertexi is defined as For most applications, delays lead to a reduce of perforemnc

. . . ; T or can even lead to instability. However there exists sorsesa
the number of its neighboring vertices, ide=#; : (i, j) € E. where the introduction of a delay in the control loop can help

teghAelJrﬁ;Pr&T il\AITi?OFEI g:]altjrr'])éﬁgétsé J g?all‘;ﬁ Itﬂce'?_r;%ﬁ eﬁ:i anstabilize a system which would not be stable without it (see G

matrix is symmetric positive semidefinite. Zero is a simpléat al. [2003], Seuretetal. [2007]). In the present artiaie will

eigenvalue ofL (the corresponding eigenvector is the vectoP OV that the double integrator consensus algorithm lgslon
— o this class of systems. To do so, the previous algorithm is

of ones, 1) if and only if the associated directed graph has &,qdified into a new algorithm defined by
directed spanning tree. This implies that the algorithnchea . 52 52
consensus if and only if the directed communication topplog X(t) = —(L+87)x(t) + °X(t — 1) @)

has a directed spanning tree or the undirected communicatiyhered € R and > 0 are additional parameters. Note that
topology is connected. if & and/ort are taken as zeros, then the classical algorithm

is retrieved. Ifd andt are not zero, then one can see that the
proposed algorithm can be explained as follows. The didgona
contribution of the Laplacian is split into two parts: ondsged

and the other is kept at the current time. This allows corisgrv
the averaging properties of the agreement algorithm.

1.1 Preliminary lemmas and definitions

In order to clarify the presentation, a lemma on positivity o
matrix inequations and a definition of exponential stapiill
be stated here. As the delay is now a control parameter, we can choose it of

Lemma 1.(Naghshtabrizi et al. [2008]) Consider three matrithe most appropriate form. In this article, we will consider
cesXy, Xo andXz € S and a time-varying parametar; R+ —  sampling delay that was used in Fridman et al. [2004] or in
[Am Awm], for some givery, andAy. If the following inequality ~ Seuret[2010]
is guaranteed T(t) =t —ty, tk <t <tgpp,
V>0, Xg4+Am—A)Xo+ (A(t) —AmXz <0, (1) Wherethey’s satisfies O=to <t; <... <tx <... corresponds to
then, it is equivalent to the sampling instants. For the sake of simplicity, we widlase
' that the sampling process is periodic, i.e. the differemtevben
X1+ (Am—Am)X2 <0, X1+ (Am—Am)X3<0.  (2)  two successive sampling instants
Definition 1. (Niculescu et al. [1998]) Letr > 0 be some pos- 1 —te=T,
itive, constant, real number. The system is said to be expongg qnstant. From computational point of view, this choise i
tially stable with the decay raw, or a-stable, if there exists a rgjeyant with respect to the introduction of a constant glela
scalarF > 1 such that the solutiox(t;to, @) satisfies: since in the sampling delay case, only one data is held in the
X(t;to, @)| < Flg|e %), (3) algorithm whereas in the case of a constant delay, all vaifies
xin the intervallt — T t] should be kept in memory. Finally the
proposed algorithm is

VEE [tk tieal,  X(t) = —(L+82)x(t) +3%(t) . (8)

In the sequel, a stability analysis of the algorithm is pisgzb

) i i . for any graph with a directed spanning tree, representetdy t

Consider the classical double integrator consensus #igori | p|acianL. Requiring a directed spanning tree is less stringent
X(t) = —ox(t) — Lx(t) , (4) than requiring a strongly connected and balanced graph (W.

wherex represents the vector containing the agents variabld3€n and R. W. Beard [2008]). Also, an inherent assumption is
From the literature (Ren [2008]), it can be seen that sudhat all agents are synchronized and share the same cloisk. Th
algorithms witho > 0 lead to an agreement of the agents ifnalysis is composed by two parts, one dealing with thelgtabi
the communication graph is undirected but the algorithnots n ©f the algorithm and another concerning the agreement of the
necessarily stable if the graph associated to the Lapldcian 2agents. More particularly, we will propose a method to ckeoos
directed. The case = 0 leads to additional difficulties since @Ppropriately the algorithm parametérandT for a givenL,

In the sequel we will say that a systenuisstable if the solution
of the system are exponentially stable with a decayagte

2. PROBLEM STATEMENT

we have: considering a performance optimisation.
. . X(t) = —Lx(t), . (5) 3. DEFINITION OF AN APPROPRIATE MODEL
or, by introducing the augmented vecygt) = [x" (t) xT (t)]T,
. 0 I — This section focuses on the definition of a suitable modeling
y) = 1| _ o | YO =Ly, (6)  of the consensus algorithm (8) to analyze its convergence.
—

Noting that the trace of the matrix is zero whatever the commdfnowing that the vectorl is an eigenvector associated to the
nication graph, the eigenvalueslogire either on the imaginary eigenvalue 0 of the Laplacian matrix, it is possible to find a
axis or there is at least one eigenvalue on the right sideeof tffhange of coordinates= W zsuch that
imaginary axis. This leads to an oscillatory or unstablesbvéir ULW = { A 0}

of the algorithm. o' 0 9)



whereA € R*, and for graphs containing a directed spanning 0 1
tree,U = [U{ U] ]T =W~1andU, = (U)y corresponds to W -35%0

th i ; 2
the N™ line of U. If L represents a disconnected graph, thﬁwatB is invertible and thaB-1 — 0-1/0

hereB = [ } and By = [;2 8} It is easy to see

. The previous

dimension of the vectorg, andz change. The next lemma 1 0
shows an appropriate way to rewrite (8) based on the pr@sertiordinary differential equation has known solutions of theni
of L. Wt) _ eB(t—tk) [CO C]_]T _ B_le)T(tk) (14)

Lemma 2.The consensus problem (8) can be rewritten “Sin\ﬂlhereco andC - .
N-1 AT . 1 € R represent the initial conditions of the
7 € R, 2 € Rand the matriA is given in (9): ordinary differential equation. This leads to

71(t) = —(A+ 82)z1(t) + 621 (1), (10a) it) = cogw(t)) sin(w(t))/8][Co]  [10 it
2(t) = — 522 (t) + 5%2(t), (10b) —dsin(w(t)) cosw(t)) ||[Ci| " |00k
(15)
Proof. Consider (8) and note that it can be rewritten as followsvherew(t) = d(t —t). The initial conditions are determined at
timet = tx. We then obtailCy = 0 andC; = [0 1]y(tx). Thus,

1
Ve ttiyal,  X(t) = —Lx(t) — &7 /tk X(s)ds we get the recurrence equation

. . k+1
Applying the change of coordinates-Ux, and from (9), (8)is o7 _ [1 sm(éT)/c‘S} t) — {1 S'V‘(5T)/5] 0
rewritten into two equations wherg = U;x € R(N-1) andz, = Y1) = | 0 cogdT) Yt =10 cogdT) yo)
Uox € RN represent respectively tie— 1 first components and whereT = ty,; — ty. Simple computations lead to

the last component af Noting thatU (—&%1)W = —&21, (8) r kel _
can be rewritten using the Leibnitz formula as - 1 sin(dT cogoT)' /o | -,
t Jltoq) = | L SIMOT) 3 coS8T)/0 gy (46

4(t)=—-Dzn(t) - 52/t z(s)ds 0 cogoT )kt
B 5 [t. “ (1) Inthe previous expression, we recognize a geometric seguen
(t)=-9 /tk 2(s)ds Thus, we obtain the following expression

The proof is concluded usinfj z(s)ds= z(t) — z(t).m Yitkr1) — [228”) = [8 Vet cgs(éT)) } cogdT)*1y(0)

The consensus problem is now expressed into an appropriate ) a7)

form to perform stability criteria. In the case of a symmetri The assumption 0@ T # 0 [r1] implies co$dT) < 1. Then it
network, the matrixV is an orthogonal matrix which meansimplies thatz(tx) tends zero and, to zy(») defined in (12).

U = WT. Then if the last column ofV is BT, thenU, =  This concludes the proak.

1/(BN) 1, which means that, corresponds to the average4 2 Stability analysis of the consensus algorithm

of the position of all agents. This does not hold always for

asymmetric communication network. Consider the consensus algorithm (8) rewritten in the fofm o

Regarding the stability of;, we introduce the augmented (;8)1.0Thefollowmg theorem holds based on the result of Seur

vectory = [z (t) Z} (t)]". Then the dynamics of; can be [2010] _ _

rewritten as follows Theorem 1.Consider the proposed consensus algorithm (8)
N associated to a given Laplaciamepresenting a communication
y(t) = Al0)y(t) +Ad(0)y(t) graph with a directed spanning tree, a given- 0, 6 > 0 and

0 0} T > 0suchthadT # 0 [r].

0 I
whereA(d) = [—(A+ 521) O] andAa(0) = {52I 0 Assume that there exigt > 0, R >0 andS; andX € S" and
two matricesS, € R™" andN e R2™" that satisfy

4. STABILITY ANALYSIS M1+ ha(T,0)MJ XM, + f4(T,0)M2 < 0, (18)
M1+ ha (T, T)MJ XM T,T)N
4.1 Preliminary stability analysis 1+ Na iy Mz XM _Q'SCE(T,T))R <0, (19

where

This section deals with the stability analysis of (10b). The — omT mT _

following lemma holds. ﬂl - i/ll\'/ll'l P(MO + aMl) M3 (SlM3+ ZSZMZ) 2NMs3
L . 2= Mg (RMy+ 2§ M3+ 25Mp),

Lemma 3.The system defined in (10b) is stable for any sam-

e < : and Mo = [A(8) Aq(8)], My = [1 0], Mz = [0 1], M3 =
glr']r;gvgﬁgg?gz iggv?arrggsst?h thatdT # 0[], i.e 6T # kit [l —I]. The functionsfy, gz and hy for all scalarsT and

T € [0 T] are given by

2y(e0) = 22(0) + y57122(0) (12) _ . 2a(T-1)
whereysr =sin(dT)/(3(1—cogdT))) =tan((m—3T)/2)/5. ;Z((-'Il:’,?):gT(l—e‘%‘)’{)z/az’a, (20)
Moreover the convergence rate of the solution to this eauili ha(T,T) = —1— 20 f4(T,T) — fa(T,0)/T.

rium is —log| coqdT)|. . _

Then, the consensus algorithm (8) with the param&tard the
Proof. Considerk > 0 and anyt € [t tc,1[ and any parameters sampling period is thusag—stable, where
T, 6 such tha®T # 0 [r1). Define the augmented vectgt) =  dg = min{a,—log(cogdT))}. Moreover the consensus equi-
2} (t) 2(t)]7, (10b) can be rewritten as follows librium is given by

y(t) = By(t) 4 Bay(ty) (13) X(e0) = Uz (X(0) + y51X(0)) - (21)



Proof. Consider the consensus algorithm (8). Using Lemma 2, 1 P 2
the algorithm is rewritten as (10). The stability of the seto

equation (10b) is ensured based on the discrete time Lyapuno

theorem. Consideo € R and a positive definite matri €

RN which defines a Lyapunov functiov for the discrete-

time system defined by = y(t) given byV (k) = y] Py. The Go G1
objective is to ensure that the incremAkt, is negative definite _. . .
(E.ll. Verriest and W. Michiels [2009]): 9 Fig. 1. Corresponding graphs of the matritgsandL;.
AVy =V(k+1)— e*ZC’TV(k) <0. The previous inequality does not depend linearlyrobut on

both T and a non linear function of, f4(T, 7). The solution

We introduce here a novel type of functional fortadl [tk tc-1].  hroposed here is to use the convexity property of the exponen

Wy (t,y) = fa (T, r)Z?T () [S1o(t) + 2Soyx] tial function ensuring tha¢?®”™ > 1+ 2at. Consequently, the
following upper-bound is obtained
+f T,T/ T(sMIRMéE (s)ds 22
a(T,7) ty ¢ (Mo RME(S) (22) T< (€97 -1)/2a <eT(1—e 27)/2a,< gqo(T,1).

-
+(fa(T,0) = fa(T. ) = /T fa (T, 0)) yic X ¥k SinceR, consequentiR1 is positive definite, we have

wherelo(t) = y(t) i £(5) = V' (8) %] V(t,y) < ETOM1+ fa(T. 1Mz +ga (T, TNRINTIE ().
DenoteV (t, %) = y' ()Py(t) +Wa (t,y;). Consider a positive a Ve defin
scalar O< € < T and the functionalV,, at timety — € andty + €. vTvci)trE) r/\ozls t:hat_/zlasr n@%?cta/?ei%f;nt'ée for ait we apply Lemma 1
Sincelo(tx +€) and fq (Tx_1, T_1 — €) tend to 0 as — O for '
all a > 0, the following equalities are satisfied n M1+ TIF(TT,IS?QH‘%I\TTO, 0

lim W (t — &, Ys—e) = M Wa (tc+ & Yre) = 0. (23) 1401, T) =
This leads to (18) and (19) using the Schur complement. Thus,
'(10a) and (10b) are exponentially stable with a respegtivel
decay ratea and —log|cogdT)|. The global algorithm (10)
is then exponentially stable with the decay rate Moreover,

according to Lemma 2, and sinege— 0 andz, — zy(«), we
conclude that the consensus algorithm is exponentiallylesta

This ensures that the extended functiovias continuous with
respect tot at all sampling instants and differentiable ove
[t tkes[ and We (tes1, Yo, ,) — Wa (tk, Yo ) = 0. No additional
constraint is introduced o and S, W, is not necessary
positive definite within two sampling instants. Then we abta

BaV (K) =V (te1, Y1) — € 27TV (b W) with the consensus equilibrium being
_oaT k+1 — N N
=g /t d [ezGT(S)V(SvyS> X(0) =Wz (o) = Wy 1] [Ozr;(i:)l] =2p(0) 1.
“tk+1 . —
— e 20T [ 2019 /(s ye) + 2aV/ (s, ys) ds The proof is concluded by noting that = Uox and thaizy(e)
S is expressed in (12

The rest of the proof consists in ensurig= \7(s,ys) +
2aV(s,ys) < 0. From (20), we have, for ati < R and for all
T€[0, Ty, fa(T,7)+ 20 fy(T,7) = —1. This leads to

V(t,y) = 2yT ()PY(t) — g (1)[S1o(t) + 25y

The previous calculations state stability conditions Far ton-
tinous system (8) in terms of LMIs. However, Theorem (1) is
based on the discrete-time Lyaponov theorem.

+2f, (T, T)_IY(I)T [RNbE_I(_t) + ZSlZO(t) + ZSzyk] 4.3 Design of Control Parameters
24
+h"t(T’ DY Xk +2ay” (HPY(D) ( In this article, performance analysis is based on a desiits ¢
—/ ET(s9MIRMoé (s)ds ria, meaning the maximisation af; in order to ensure system’s
t exponential stability with the maximum decay rate. Them, fo
Consider a matrid € R?™" and the following equality a reasonable set of chosen values for control parandeded

t T, the optimal value ofry have been calculated for each point
/ [2NMoé (s)]ds  (25) (5,T). We would also like to discuss here the influence of initial
. , . onditions on the consensus equilibrium presented in (21).
$|nceR> 0 and consequently non singular, a classical boung;o objective is to make agents converge to a common value,
ing ensures that for al< [t, t;a[ and for alls € [t ] witch depends on both initial positions and velocities,ittital

28T (1)NMo& () < ET(H)NRINTE(t) + ET(s)MJ RMoE (). velocitiesx(0) may thus corrupt the final equilibrium in case of

Integrating the previous inequality ovig, t], the following distributed estimation:
inequality is obtained X(e0) = U2(x(0) +4;) (28)
t o T T whereA; = y57tX(0). Thus, there exist a way to ensure that
*/ &' (Mg RMoé (s)ds< —2& 7 (t)N[y(t) — yi] (26) thenitial velocities will not corrupt dramatically the usensus
K equilibrium. With this approach, it is possible to chodsand

t
Ny -w = | [Ny(s]ds= |

T InT
_ +TE (ONRTNTE(D), T such that); < €, wheree is a given bound of the estimation
Noting that error. More precisely, by choosing the good values¥andT,
y(t) = AY(t) + Agy(tk) = Moé (1),  y(t) = Mié&(t), we can control the consensus equilibrium egor

Y(t) = M2& (t),  do(t) = y(t) —y(t) = M (1),
and adding (26) to (24), the following inequality is obtadrfer

all te [t thera] In the framework of the European Project FeedNetBack, coop-
V(t,y) < ET(t)[I'I1+ fa(T,r)I'I2+TNFF1NT]E(t). (27) erative control of a four under-water vehicles network unde

5. EXAMPLES
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(a) Exponential decay rate f@p (b) Exponential decay rate f@ (Top view)

0.44

6

(c) Exponential decay rate f@; (d) Exponential decay rate f@; (Top view)

Fig. 2. Convergence rate of the consensus algorithm forakvalues of §, T) and for the communication graply andG;.

varying-topology and communications constraints is €ddi Figure (3) shows simulations of algorithm (8) considering
Consider a set of four agents connected through the unddect,, and different values od andT. If T = 0, this algorithm

and directed graphs shown in Figure 1. is unstable for directed and undirected graph 3(a-b), with a
oscillating behavior for the undirected graph 3(a). Fidd(ed)
show simulation results using the optimal pait{) according

to Theorem 1 (and Figure 2). We can see that they correspond to

To each graph is associated a Laplacian matrix given by

-105 0 05 -1 1 0 O the fastest algorithm presented here. Figure 3(e) showbéesta
Lo — 05-105 0 L, — 0 -11 O response but with a greater convergence rate when compared
°“|005-105|"1t7 |0 0 -11]|" with Figure 3(c). In Figures 3(f-g) we can find the particular
05 0 05-1 1 0 0 -1 case wherel = 11/9, which does not fulfill assumptions of

Theorem 1. Instability can be seen, with oscillations acbtie
gLonsensus algorithm final value. Finally, Figures 3(hskpw
algorithm behavior for greater valuesbflIt's easy to conclude
that algorithm’s performances decrease, and become Umstab
In Table 1 we can fingst andx(«) values for differen® and

. For the particular case whefe= 11/ we can observe that
consensus final value corresponds to the average of pdsition
The objective is to find the highest value fgg (on the verti- initial conditions {57=0), but no stability is achieved. The
cal axis) that guarantees algorithm (8) convergence. Ei@ur optimal behavior does not corresponds to the point where we
shows the maximum convergence ratgsatisfying Theorem find the smallest erreug, but where decay rateyg is the
1 for several values od and T, and forLp and Lj, with  greatest.
T € ]0,1.5]s and d € [0,10]. In Figure 2(a),2(c) are a 3-D
representation ofrg stability results. Figure 2(b),2(d) show a 6. CONCLUSION
top-view from the previous figures allowing us to obseme
values space distribution. On these figures, we observéaregin this article, we proposed a new consensus algorithm for
whereag > 0 which corresponds to the stability region of (8).double integrator agents. This paper puts forward the techn
The best positive value afy is obtained whend, T)=(3;0.3) cal advantages of such algorithm, since it reduces informa-
and ©,T)=(6.4;0.15), for grapl@y and graphG; respectively. tion quantity needed for control, as no more need of velocity
The fact that for a specific value @& and T, stability is not sensors, meaning economical, space and calculation saving
guaranteed by Theorem 1, does not necessary mean that Afmeoptimisation of controller parameters is proposed sa tha
algorithm is unstable: in Figure 3(e), the algorithm is &ab exponential stability of the solutions is achieved. An egsion
even though under our conditions we consider it unstable. Tlof the consensus equilibrium is derived so that the influence
stability conditions proposed in this article are sufficient of the initial position with respect to the initial velocigan
not necessary conditions. Optimality is obtained for aaiert be achieved. A constraint on the proposed stability cateri
value of T, and once it becomes too small or too significantexpressed in term of LMIs is that the complexity will draatlg
this leads to a reduction of performances, as it will be shimwn increase for large networks. Thus, it is pertinent to dgvelo
the following. other tools to analyse this algorithm for larger agents neta:

and for simulations purposes we took as initial condition
xT(0) = [20 15 5 Q andx' (0) = [1 2 3 J. Those two graphs
are balanced, witch implies that consensus equilibriurnesal
will be defined as the average of initial conditions presgnt
just before weighted by different values®fndT.



Graph O 5 Graph 1

100 : 5210 :
5=0 I 5=0
T=0 SOM 0 ‘@ T=0
0 L L L ! -5 L L L L
0 5 10 () 15 20 25 0 5 10 () 15 20 25
20 T T T T 3J 20 T T T T 3J
5=3 10?& | 10k | =64
T=0,3 / > T=0.15
0 ; ; i i ] 0 ; ; i ; ]
0 5 10 (¢) 15 20 25 0 5 10 (d) 15 20 25
20 T T T T 3J 20 T T T T 3J
5=3 K 5=6,4
S|
T=07 = 10 S AR T=ri
0 . . . : ] 0 . . . . ]
0 5 10 () 15 20 25 0 5 10 ¢ 15 20 25
20 * ‘ ‘ ‘ 7 W T T ]
&=3 R 56,4
T=178 1GW’ = 1OWH JJJJJJJJ —] T=1,3
0 . . . : ] 0 . . . . ]
0 5 10 (g) 15 20 25 0 5 10 (h) 15 20 25
20 : ‘ ‘ : : 20
=3 M‘_ N 5=6,4
= IGW woo o | T=3
0 : ‘ ‘ : 4 QNV\N\(\/V\NVV\/VWWWVW
0 5 10 15 20 25 0 5 10 15 20 25
0] @
Time [s] Time [s]

Fig. 3. Evolution of the agents state for several values @stmpling period

Graph 0 sampled-data systemdn Systems and Control LetterS7
5=3 (5):378-385, 2008.

T 0 03 07 | m/d 3 S.-I. Niculescu, C. E. De Souza, L. Dugard, and J.-M. Dion.
yst_| 222,22| 0,69 | 0,19 0 0,07 Robust exponential stability and stabilization of underta
X() | 454,44] 11,38 ] 10,38| 10 | 10,14 systems with time-varying delay=EE Trans. on Automatic

Graph 1 control, 43(5):743—-748, 1998.
0=64 P. Ogren, E. Fiorelli, and N. E. Leonard. Cooperative cdntro

T 0 | 015] mé | 13 | 3 of mobile sensor networks: Adaptive gradient climbing in a

X‘g) f§%8625 1063;0 100 loc’)ofg fisfe distributed environmentln EEE Trans.Automat. Conté9
Table 1 (8):1292-1302, 2004.

R. Olfati-Saber and R.M. Murray. Consensus problems in
network of agents with switching topology and time delays.

REFERENCES IEEE Trans. on Automatic Controd9(9), 2004.
R. Olfati-Saber, A. Fax, and R.M. Murray. Consensus and

D.V. Dimarogonas and K.J. Kyriakopoulos. = A connection qqperation in networked multi-agent systerRsoceedings
between formation infeasibility and velocity alignment in ¢ the IEEE 95(1):215-233, 2007.

kinematic multi-agent systemsAutomatica 44(10):2648— \y Ren. On consensus algorithms for double-integrator dy-

2654, 2008. L . , _ namics.In IEEE Transactions on Automatic Conty@3(6):
E.Il. Verriest and W. Michiels. Stability analysis of linear 1503_1509 2008.
systems with stochastically varying delaysSystems and \y, Ren and Y. Cao. Convergence on sampled-data consensus

Control Letter 58(10-11):783-791, 2009. algorithms for double-integrator dynamicdn 47th IEEE
E. Fridman, A. Seuret, and J.-P. Richard. Robust sampled-cgnference on Decision and Contr@D08.

data stabilization of linear systems: An inputdelay appioa \y Ren, R. W. Beard, and E. M. Atkins. A survey of consensus
Automatica40(8):1141-1446,2004. _ problems in multi-agent coordinatiotn American Control
K. Gu, V.-L. Kharitonov, and J. ChenStability of time-delay Conference2005.

systemsBirkhauser, 2003. A. Seuret. A novel stability analysis of sampled-data syste
J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of tecen yith applications to multi-rate sampling and packet loss.
results in networked control systems. Rroceedings of g pmitted to Automatic2010.

IEEE, volume 95, page 1, 2007. A. Seuret, C. Edwards, S.K. Spurgeon, and E. Fridman. Static

W. Michiels, S.-I. Niculescu, and L. Moreau. Using delays output feedback sliding mode control design via an artificia
and time-varying gains to improve the static output feellbac - stapjlizing delay.|[EEE Trans. on Automatic Controb4(2):
stabilizability of linear systems : a comparisdklA Journal 256—265, 2007.

of Mathematical Control and Informatior21(4):393-418, \ny Ren and R. W. Beard. Distributed Consensus in

2004. . Multi-vehicle cooperative Control: theory and applicat®
U. Muenz, A. Papachristodoulou, and F. Allgower. Delay Springer, 2008.

robustness in consensus probleffsappear in Automatica | xjao and S. Boyd. Fast linear iterations for distributed a

2010. . __eraging. In42th IEEE Conference on Decision and Control
P. Naghshtabrizi, J.P. Hespanha, and A.R. Teel. Exporentiagn3.

stability of impulsive systems with application to uncéamta



