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Abstract: This paper deals with the double integrator consensus problem. The objective is the design of
a new consensus algorithm for continuous-time multi-agentsystems. The dynamic of agents is assumed
to be of double integrator type. The proposed algorithm considers that there are no sensors to measure the
velocity of the agents. Thus the classical double integrator consensus algorithm leads to an oscillatory
behavior if the communication graph is undirected and to instability if the graph is directed. The novel
algorithm proposes to sampled, in an appropriate manner, part of the multi-agent systems state such that
the algorithm converges. An expression of the consensus equilibrium is provided. Some examples are
provided to show the efficiency of the new algorithm.
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1. INTRODUCTION

Network control systems (NCS) are spatially distributed sys-
tems with a communication network used between sensors,
actuators, and controllers, witch allows flexible architectures
and generally reduces installation and maintenance costs,and
identifies control over networks as one of the key future di-
rections for control. This means NCS’s applications can be
found in a large range of areas such as mobile sensor networks
(Ogren et al. [2004]), remote surgery, haptic collaboration
over Internet, multi-robot systems (Olfati-Saber and Murray
[2004]), automated highway systems, averaging in communi-
cation networks (Xiao and Boyd [2003]) and formation control
(Dimarogonas and Kyriakopoulos [2008]). Several results have
appeared in recent literature that consider systems with differ-
ent motion models, symmetry of communication and network
interactions. A recent review of the vast literature in the field
can be found in Olfati-Saber et al. [2007], Hespanha et al.
[2007] and Ren et al. [2005].

We consider a ”consensus” algorithm (or protocol) as an in-
teraction rule that specifies the information exchange between
an agent and all of its neighbors over the network in order to
reach an agreement regarding a certain quantity of interestthat
depends on the state of all agents. However, the use of a shared
network introduces new challenges, such as delays over com-
munications, packet losses or even communication blackout,
witch can dramatically affect ”consensus” convergence rate and
cooperative control laws efficiency (Muenz et al. [2010]). Here,
we consider that agents are assumed to obey a double integra-
tor model. This model fits the behavior of real robotic agents
more naturally, since such mechanical systems are controlled
in most cases through their acceleration and not their velocity.
Moreover, several robotic systems can be reduced to a double

⋆ This work was supported by the European Project FeedNetBack:
http://www.feednetback.eu/.

integrator via a transformation in their control law. But double
integrator algorithms leads to several problems (Ren [2008]),
(Ren and Cao [2008]). For instance, if the graph is directed,
the algorithm is not stable, and on the other hand, if the graph
is undirected, this requires the knowledge of both positionand
velocity to converge to the same value. In this paper, we provide
a novel consensus algorithm based on sampling approach, since
it’s known that for some systems delays have a stabilizing
property (Michiels et al. [2004]), and sampling can be seen as a
particular delay,τ(t) = t− tk (Fridman et al. [2004]). A method
to design the algorithm parameters, including the appropriated
sampling period T, on a ”optimal” way is proposed based on
a LMI’s formulation. The communication graphs are supposed
to be directed and undirected. The new algorithm offers sev-
eral advantages, since it drastically reduce information quantity
needed for control or quantity of sensors needed, witch means
economical, space and calculation savings.

This paper is organized as follows: Section 2 presents the prob-
lem treated in this article. Section 3 will be dedicated to the
establishment of the appropriated model, and in Section 4 we
will proceed to stability analysis of the algorithm. Section 5 in-
cludes illustrating simulation results and performance analysis,
and finally, Section 6 will present our conclusions and indicate
possible future research efforts.

Throughout the paper, the superscript ‘T’ stands for matrix
transposition,Rn denote then-dimensional Euclidean space,
andR

n×m is the set ofn×mreal matrices. The setS
n stands for

the set of symmetric matrices ofR
n×n. I represents the identity

matrix. Finally, for any matrixM, the notation(M)i denotes
the ith line of M andλk(M) represents thekth eigenvalue ofM.
The notation|.| corresponds the Euclidean norm and, for any
functionφ : [−τ, 0] → R

n, the notation|φ |τ corresponds to
maxθ∈[−τ, 0] |φ(θ )|.



For the graphG with N vertices and edge set given byE =
{(i, j) : j ∈ Ni} the adjacency matrix A= A(G) = (ai j ) is
the N×N matrix given byai j = 1, if (i, j) ∈ E and ai j = 0,
otherwise. If there is an edge connecting two verticesi, j, i.e.
(i, j) ∈E, theni, j are calledadjacent. If there is a path between
any two vertices of the graphG, then G is called strongly
connectedin the case of directed, and simplyconnectedin the
case of undirected graphs. Thedegree di of vertexi is defined as
the number of its neighboring vertices, i.e.di = # j : (i, j) ∈ E.
Let ∆ be theN×N diagonal matrix ofdi ’s. TheLaplacianof G
is the matrixL = ∆−A. For an undirected graph the Laplacian
matrix is symmetric positive semidefinite. Zero is a simple
eigenvalue ofL (the corresponding eigenvector is the vector
of ones,

−→
1 ) if and only if the associated directed graph has a

directed spanning tree. This implies that the algorithm reaches
consensus if and only if the directed communication topology
has a directed spanning tree or the undirected communication
topology is connected.

1.1 Preliminary lemmas and definitions

In order to clarify the presentation, a lemma on positivity of
matrix inequations and a definition of exponential stability will
be stated here.

Lemma 1.(Naghshtabrizi et al. [2008]) Consider three matri-
cesX1, X2 andX3 ∈ S

n and a time-varying parameterλ : R
+ →

[λm λM], for some givenλm andλM. If the following inequality
is guaranteed

∀t ≥ 0, X1 +(λM −λ (t))X2+(λ (t)−λm)X3 < 0, (1)

then, it is equivalent to

X1 +(λM −λm)X2 < 0, X1 +(λM −λm)X3 < 0. (2)

Definition 1. (Niculescu et al. [1998]) Letα > 0 be some pos-
itive, constant, real number. The system is said to be exponen-
tially stable with the decay rateα, or α-stable, if there exists a
scalarF ≥ 1 such that the solutionx(t; t0,φ) satisfies:

|x(t; t0,φ)| ≤ F|φ |τ e−α(t−t0). (3)

In the sequel we will say that a system isα-stable if the solution
of the system are exponentially stable with a decay rateαg.

2. PROBLEM STATEMENT

Consider the classical double integrator consensus algorithm

ẍ(t) = −σ ẋ(t)−Lx(t) , (4)

wherex represents the vector containing the agents variables.
From the literature (Ren [2008]), it can be seen that such
algorithms withσ > 0 lead to an agreement of the agents if
the communication graph is undirected but the algorithm is not
necessarily stable if the graph associated to the LaplacianL is
directed. The caseσ = 0 leads to additional difficulties since
we have:

ẍ(t) = −Lx(t) , (5)
or, by introducing the augmented vectory(t) = [xT(t) ẋT(t)]T ,

ẏ(t) =

[

0 I
−L 0

]

y(t) = L̄y(t) , (6)

Noting that the trace of the matrix is zero whatever the commu-
nication graph, the eigenvalues ofL are either on the imaginary
axis or there is at least one eigenvalue on the right side of the
imaginary axis. This leads to an oscillatory or unstable behavior
of the algorithm.

However it is important to put forward the technical advantages
of this assumption: by supposingσ = 0, we reduce drastically
the information quantity needed for the control laws, and in
a technical point of view, no velocity sensors are needed but
only sensors to get the agent’s position. This means economical,
space and calculation savings.

For most applications, delays lead to a reduce of performances
or can even lead to instability. However there exists some cases
where the introduction of a delay in the control loop can helpto
stabilize a system which would not be stable without it (see Gu
et al. [2003], Seuret et al. [2007]). In the present article,we will
prove that the double integrator consensus algorithm belongs
to this class of systems. To do so, the previous algorithm is
modified into a new algorithm defined by

ẍ(t) = −(L+ δ 2I)x(t)+ δ 2x(t − τ) (7)
whereδ ∈ R and τ ≥ 0 are additional parameters. Note that
if δ and/orτ are taken as zeros, then the classical algorithm
is retrieved. Ifδ andτ are not zero, then one can see that the
proposed algorithm can be explained as follows. The diagonal
contribution of the Laplacian is split into two parts: one delayed
and the other is kept at the current time. This allows conserving
the averaging properties of the agreement algorithm.

As the delay is now a control parameter, we can choose it of
the most appropriate form. In this article, we will considera
sampling delay that was used in Fridman et al. [2004] or in
Seuret [2010]

τ(t) = t − tk, tk ≤ t < tk+1 ,

where thetk’s satisfies 0= t0 < t1 < ... < tk < ... corresponds to
the sampling instants. For the sake of simplicity, we will assume
that the sampling process is periodic, i.e. the difference between
two successive sampling instants

tk+1− tk = T ,

is constant. From computational point of view, this choice is
relevant with respect to the introduction of a constant delay τ
since in the sampling delay case, only one data is held in the
algorithm whereas in the case of a constant delay, all valuesof
x in the interval[t − τ t] should be kept in memory. Finally the
proposed algorithm is

∀t ∈ [tk tk+1[, ẍ(t) = −(L+ δ 2I)x(t)+ δ 2x(tk) . (8)

In the sequel, a stability analysis of the algorithm is proposed
for any graph with a directed spanning tree, represented by the
LaplacianL. Requiring a directed spanning tree is less stringent
than requiring a strongly connected and balanced graph (W.
Ren and R. W. Beard [2008]). Also, an inherent assumption is
that all agents are synchronized and share the same clock. This
analysis is composed by two parts, one dealing with the stability
of the algorithm and another concerning the agreement of the
agents. More particularly, we will propose a method to choose
appropriately the algorithm parametersδ andT for a givenL,
considering a performance optimisation.

3. DEFINITION OF AN APPROPRIATE MODEL

This section focuses on the definition of a suitable modeling
of the consensus algorithm (8) to analyze its convergence.
Knowing that the vector

−→
1 is an eigenvector associated to the

eigenvalue 0 of the Laplacian matrix, it is possible to find a
change of coordinatesx = Wzsuch that

ULW =

[

∆ 0
0T 0

]

, (9)



where∆ ∈ R
x, and for graphs containing a directed spanning

tree,U =
[

UT
1 UT

2

]T
= W−1 andU2 = (U)N corresponds to

the Nth line of U . If L represents a disconnected graph, the
dimension of the vectorsz1 and z2 change. The next lemma
shows an appropriate way to rewrite (8) based on the properties
of L.

Lemma 2.The consensus problem (8) can be rewritten using
z1 ∈ R

N−1, z2 ∈ R and the matrix∆ is given in (9):

z̈1(t) = −(∆ + δ 2I)z1(t)+ δ 2z1(tk), (10a)

z̈2(t) = −δ 2z2(t)+ δ 2z2(tk), (10b)

Proof. Consider (8) and note that it can be rewritten as follows

∀t ∈ [tk tk+1[, ẍ(t) = −Lx(t)− δ 2
∫ t

tk
ẋ(s)ds

Applying the change of coordinatesz=Ux, and from (9), (8) is
rewritten into two equations wherez1 =U1x ∈R

(N−1) andz2 =
U2x ∈R

N represent respectively theN−1 first components and
the last component ofz. Noting thatU(−δ 2I)W = −δ 2I , (8)
can be rewritten using the Leibnitz formula as

z̈1(t) = −∆z1(t)− δ 2
∫ t

tk
ż1(s)ds,

z̈2(t) = −δ 2
∫ t

tk
ż2(s)ds.

(11)

The proof is concluded using
∫ t
tk

żi(s)ds= zi(t)−zi(tk).

The consensus problem is now expressed into an appropriate
form to perform stability criteria. In the case of a symmetric
network, the matrixW is an orthogonal matrix which means
U = WT . Then if the last column ofW is β

−→
1 , thenU2 =

1/(βN)
−→
1 , which means thatz2 corresponds to the average

of the position of all agents. This does not hold always for
asymmetric communication network.

Regarding the stability ofz1, we introduce the augmented
vector y = [zT

1 (t) żT
1 (t)]T . Then the dynamics ofz1 can be

rewritten as follows

ẏ(t) = A(δ )y(t)+Ad(δ )y(tk) ,

whereA(δ ) =

[

0 I
−(∆ + δ 2I) 0

]

andAd(δ ) =

[

0 0
δ 2I 0

]

.

4. STABILITY ANALYSIS

4.1 Preliminary stability analysis

This section deals with the stability analysis of (10b). The
following lemma holds.

Lemma 3.The system defined in (10b) is stable for any sam-
pling periodT and anyδ such thatδT 6= 0 [π ], i.e δT 6= kπ .
The variablez2 converges to

z2(∞) = z2(0)+ γδT ż2(0) (12)

whereγδT = sin(δT)/(δ (1−cos(δT))) = tan((π−δT)/2)/δ .
Moreover the convergence rate of the solution to this equilib-
rium is− log|cos(δT)|.

Proof. Considerk ≥ 0 and anyt ∈ [tk tk+1[ and any parameters
T, δ such thatδT 6= 0 [π ]. Define the augmented vector ¯y(t) =
[zT

2 (t) ż2(t)]T , (10b) can be rewritten as follows
˙̄y(t) = Bȳ(t)+Bdȳ(tk) (13)

where B =

[

0 1
−δ 2 0

]

and Bd =

[

0 0
δ 2 0

]

. It is easy to see

thatB is invertible and thatB−1 =

[

0 −1/δ 2

1 0

]

. The previous

ordinary differential equation has known solutions of the form

ȳ(t) = eB(t−tk)[C0 C1]
T −B−1Bdȳ(tk) (14)

whereC0 and C1 ∈ R represent the initial conditions of the
ordinary differential equation. This leads to

ȳ(t) =

[

cos(w(t)) sin(w(t))/δ
−δ sin(w(t)) cos(w(t))

][

C0
C1

]

+

[

1 0
0 0

]

ȳ(tk)

(15)
wherew(t) = δ (t− tk). The initial conditions are determined at
time t = tk. We then obtainC0 = 0 andC1 = [ 0 1 ] ȳ(tk). Thus,
we get the recurrence equation

ȳ(tk+1) =

[

1 sin(δT)/δ
0 cos(δT)

]

ȳ(tk) =

[

1 sin(δT)/δ
0 cos(δT)

]k+1

ȳ(0)

whereT = tk+1− tk. Simple computations lead to

ȳ(tk+1) =







1 sin(δT)
k+1

∑
i=0

cos(δT)i/δ

0 cos(δT)k+1






ȳ(0) (16)

In the previous expression, we recognize a geometric sequence.
Thus, we obtain the following expression

ȳ(tk+1)−

[

z2(∞)
0

]

=

[

0 −γδT cos(δT))
0 1

]

cos(δT)k+1ȳ(0)

(17)
The assumption onδT 6= 0 [π ] implies cos(δT) < 1. Then it
implies thatż2(tk) tends zero andz2 to z2(∞) defined in (12).
This concludes the proof.

4.2 Stability analysis of the consensus algorithm

Consider the consensus algorithm (8) rewritten in the form of
(10). The following theorem holds based on the result of Seuret
[2010]
Theorem 1.Consider the proposed consensus algorithm (8)
associated to a given LaplacianL representing a communication
graph with a directed spanning tree, a givenα > 0, δ > 0 and
T > 0 such thatδT 6= 0 [π ].

Assume that there existP > 0, R > 0 andS1 andX ∈ S
n and

two matricesS2 ∈ R
n×n andN ∈ R

2n×n that satisfy

Π1 +hα(T,0)MT
2 XM2 + fα(T,0)Π2 < 0, (18)

[

Π1 +hα(T,T)MT
2 XM2 gα(T,T)N

∗ −gα(T,T)R

]

< 0, (19)

where
Π1 = 2MT

1 P(M0 + αM1)−MT
3 (S1M3 +2S2M2)−2NM3

Π2 = MT
0 (RM0 +2S1M3 +2S2M2),

and M0 = [ A(δ ) Ad(δ ) ], M1 = [ I 0 ], M2 = [ 0 I ], M3 =
[ I −I ]. The functionsfα , gα and hα for all scalarsT and
τ ∈ [0 T] are given by

fα(T,τ) = (e2α(T−τ)−1)/2α,
gα(T,τ) = e2αT(1−e−2ατ)/2α,
hα(T,τ) = −1−2α fα(T,τ)− fα(T,0)/T.

(20)

Then, the consensus algorithm (8) with the parameterδ and the
sampling periodT is thusαg−stable, where
αg = min{α,− log(cos(δT))}. Moreover the consensus equi-
librium is given by

x(∞) = U2 (x(0)+ γδT ẋ(0)) . (21)



Proof. Consider the consensus algorithm (8). Using Lemma 2,
the algorithm is rewritten as (10). The stability of the second
equation (10b) is ensured based on the discrete time Lyapunov
theorem. Considerα ∈ R and a positive definite matrixP ∈
R

2N which defines a Lyapunov functionV for the discrete-
time system defined byyk = y(tk) given byV(k) = yT

k Pyk. The
objective is to ensure that the increment∆Vα is negative definite
(E.I. Verriest and W. Michiels [2009]):

∆Vα = V(k+1)−e−2αTV(k) < 0.

We introduce here a novel type of functional for allt ∈ [tk tk+1].

Wα(t,yt) = fα (T,τ)ζ T
0 (t)[S1ζ0(t)+2S2yk]

+ fα(T,τ)
∫ t

tk
ξ T(s)MT

0 RM0ξ (s)ds

+( fα(T,0)− fα(T,τ)− τ/T fα(T,0))yT
k Xyk

(22)

whereζ0(t) = y(t)−yk, ξ (s) = [yT(s) yT
k ]T .

DenoteV̄(t,yt) = yT(t)Py(t) +Wα(t,yt). Consider a positive
scalar 0< ε < T and the functionalWα at timetk−ε andtk +ε.
Sinceζ0(tk + ε) and fα (Tk−1,Tk−1− ε) tend to 0 asε → 0 for
all α > 0, the following equalities are satisfied

lim
ε→0

Wα(tk− ε,ytk−ε) = lim
ε→0

Wα(tk + ε,ytk+ε) = 0. (23)

This ensures that the extended functionalV̄ is continuous with
respect tot at all sampling instants and differentiable over
[tk tk+1[ and Wα(tk+1,ytk+1) −Wα(tk,ytk) = 0. No additional
constraint is introduced onS1 and S2, Wα is not necessary
positive definite within two sampling instants. Then we obtain

∆αV(k) = V̄(tk+1,ytk+1)−e−2αTV̄(tk,ytk)

= e−2αT
∫ tk+1

tk
d

[

e2ατ(s)V̄(s,ys)
]

= e−2αT
∫ tk+1

tk
e2ατ(s)( ˙̄V(s,ys)+2αV̄(s,ys))ds

The rest of the proof consists in ensuringṼ = ˙̄V(s,ys) +
2αV̄(s,ys) < 0. From (20), we have, for allα ∈ R and for all
τ ∈ [0,Tk], ḟα (T,τ)+2α fα(T,τ) = −1. This leads to

Ṽ(t,yt) = 2yT(t)Pẏ(t)− ζ T
0 (t)[S1ζ0(t)+2S2yk]

+2 fα(T,τ)ẏ(t)T [RM0ξ (t)+2S1ζ0(t)+2S2yk]
+hα(T,τ)yT

k Xyk +2αyT(t)Py(t)

−

∫ t

tk
ξ T(s)MT

0 RM0ξ (s)ds.

(24)

Consider a matrixN ∈ R
2n×n and the following equality

2N [y(t)−yk] =

∫ t

tk
[2Nẏ(s)]ds=

∫ t

tk
[2NM0ξ (s)]ds. (25)

SinceR> 0 and consequently non singular, a classical bound-
ing ensures that for allt ∈ [tk, tk+1[ and for alls∈ [tk, t]

2ξ T(t)NM0ξ (s) ≤ ξ T(t)NR−1NTξ (t)+ ξ T(s)MT
0 RM0ξ (s).

Integrating the previous inequality over[tk, t], the following
inequality is obtained

−
∫ t

tk
ξ T(s)MT

0 RM0ξ (s)ds≤−2ξ T(t)N[y(t)−yk]

+τξ T(t)NR−1NTξ (t),
(26)

Noting that

ẏ(t) = Ay(t)+Ady(tk) = M0ξ (t), y(t) = M1ξ (t),
y(tk) = M2ξ (t), ζ0(t) = y(t)−y(tk) = M3ξ (t),

and adding (26) to (24), the following inequality is obtained for
all t ∈ [tk, tk+1[

Ṽ(t,yt) ≤ ξ T(t)[Π1 + fα(T,τ)Π2 + τNR−1NT ]ξ (t). (27)

Fig. 1. Corresponding graphs of the matricesL0 andL1.

The previous inequality does not depend linearly onτ but on
both τ and a non linear function ofτ, fα(T,τ). The solution
proposed here is to use the convexity property of the exponen-
tial function ensuring thate2ατ ≥ 1+ 2ατ. Consequently, the
following upper-bound is obtained

τ ≤ (e2ατ −1)/2α ≤ e2ατ(1−e−2ατ)/2α,≤ gα(T,τ).

SinceR, consequentlyR−1 is positive definite, we have
Ṽ(t,yt) ≤ ξ T(t)[Π1 + fα(T,τ)Π2 +gα(T,τ)NR−1NT ]ξ (t).

To prove thatṼ is negative definite for allτ we apply Lemma 1
with λ (t) = e−2ατ , which leads to

Π1 + fα(T,0)Π2 < 0,
Π1 +gα(T,T)NR−1NT < 0.

This leads to (18) and (19) using the Schur complement. Thus,
(10a) and (10b) are exponentially stable with a respectively
decay rateα and−log|cos(δT)|. The global algorithm (10)
is then exponentially stable with the decay rateαg. Moreover,
according to Lemma 2, and sincez1 → 0 andz2 → z2(∞), we
conclude that the consensus algorithm is exponentially stable
with the consensus equilibrium being

x(∞) = Wz2(∞) = [W1
−→
1 ]

[

0n−1×1
z2(∞)

]

= z2(∞)
−→
1 .

The proof is concluded by noting thatz2 = U2x and thatz2(∞)
is expressed in (12)

The previous calculations state stability conditions for the con-
tinous system (8) in terms of LMIs. However, Theorem (1) is
based on the discrete-time Lyaponov theorem.

4.3 Design of Control Parameters

In this article, performance analysis is based on a desired crite-
ria, meaning the maximisation ofαg in order to ensure system’s
exponential stability with the maximum decay rate. Then, for
a reasonable set of chosen values for control parameterδ and
T, the optimal value ofαg have been calculated for each point
(δ ,T). We would also like to discuss here the influence of initial
conditions on the consensus equilibrium presented in (21).If
the objective is to make agents converge to a common value,
witch depends on both initial positions and velocities, theinitial
velocitiesẋ(0) may thus corrupt the final equilibrium in case of
distributed estimation:

x(∞) = U2(x(0)+ ∆z) (28)
where∆z = γδT ẋ(0). Thus, there exist a way to ensure that

the initial velocities will not corrupt dramatically the consensus
equilibrium. With this approach, it is possible to chooseδ and
T such that∆z < ε, whereε is a given bound of the estimation
error. More precisely, by choosing the good values forδ andT,
we can control the consensus equilibrium errorε.

5. EXAMPLES

In the framework of the European Project FeedNetBack, coop-
erative control of a four under-water vehicles network under
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Fig. 2. Convergence rate of the consensus algorithm for several values of (δ ,T) and for the communication graphsG0 andG1.

varying-topology and communications constraints is studied.
Consider a set of four agents connected through the undirected
and directed graphs shown in Figure 1.

To each graph is associated a Laplacian matrix given by

L0 =







−1 0.5 0 0.5
0.5 −1 0.5 0
0 0.5 −1 0.5

0.5 0 0.5 −1






,L1 =







−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1






,

and for simulations purposes we took as initial conditions:
xT(0) = [20 15 5 0] and ẋT(0) = [1 2 3 2]. Those two graphs
are balanced, witch implies that consensus equilibrium value
will be defined as the average of initial conditions presented
just before weighted by different values ofδ andT.

The objective is to find the highest value forαg (on the verti-
cal axis) that guarantees algorithm (8) convergence. Figure 2
shows the maximum convergence rateαg satisfying Theorem
1 for several values ofδ and T, and for L0 and L1, with
T ∈ [0,1.5]s and δ ∈ [0,10]. In Figure 2(a),2(c) are a 3-D
representation ofαg stability results. Figure 2(b),2(d) show a
top-view from the previous figures allowing us to observeαg
values space distribution. On these figures, we observe a region
whereαg > 0 which corresponds to the stability region of (8).
The best positive value ofαg is obtained when (δ ,T)=(3;0.3)
and (δ ,T)=(6.4;0.15), for graphG0 and graphG1 respectively.
The fact that for a specific value ofδ and T, stability is not
guaranteed by Theorem 1, does not necessary mean that the
algorithm is unstable: in Figure 3(e), the algorithm is stable
even though under our conditions we consider it unstable. The
stability conditions proposed in this article are sufficient but
not necessary conditions. Optimality is obtained for a certain
value ofT, and once it becomes too small or too significant,
this leads to a reduction of performances, as it will be shownin
the following.

Figure (3) shows simulations of algorithm (8) consideringL0,
L1, and different values ofδ andT. If T = 0, this algorithm
is unstable for directed and undirected graph 3(a-b), with an
oscillating behavior for the undirected graph 3(a). Figure3(c-d)
show simulation results using the optimal pair (δ ,T) according
to Theorem 1 (and Figure 2). We can see that they correspond to
the fastest algorithm presented here. Figure 3(e) show a stable
response but with a greater convergence rate when compared
with Figure 3(c). In Figures 3(f-g) we can find the particular
case whereT = π/δ , which does not fulfill assumptions of
Theorem 1. Instability can be seen, with oscillations around the
consensus algorithm final value. Finally, Figures 3(h-i-j)show
algorithm behavior for greater values ofT. It’s easy to conclude
that algorithm’s performances decrease, and become unstable.
In Table 1 we can findγδT andx(∞) values for differentδ and
T. For the particular case whereT = π/δ we can observe that
consensus final value corresponds to the average of position’s
initial conditions (γδT=0), but no stability is achieved. The
optimal behavior does not corresponds to the point where we
find the smallest erreurε, but where decay rateαg is the
greatest.

6. CONCLUSION

In this article, we proposed a new consensus algorithm for
double integrator agents. This paper puts forward the techni-
cal advantages of such algorithm, since it reduces informa-
tion quantity needed for control, as no more need of velocity
sensors, meaning economical, space and calculation savings.
An optimisation of controller parameters is proposed so that
exponential stability of the solutions is achieved. An expression
of the consensus equilibrium is derived so that the influence
of the initial position with respect to the initial velocitycan
be achieved. A constraint on the proposed stability criteria
expressed in term of LMIs is that the complexity will drastically
increase for large networks. Thus, it is pertinent to develop
other tools to analyse this algorithm for larger agents networks.
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Fig. 3. Evolution of the agents state for several values of the sampling periodT

Graph 0
δ = 3

T 0 0,3 0,7 π/δ 3
γδT 222,22 0,69 0,19 0 0,07
x(∞) 454,44 11,38 10,38 10 10,14

Graph 1
δ = 6,4

T 0 0,15 π/δ 1,3 3
γδT 48,82 0,30 0 0,09 0,88
x(∞) 107,65 10,60 10 10,19 11,76

Table 1.
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