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Abstract—This paper considers the problem of coordinating a
number of vehicles in order to guarantee safe passage through a
road intersection. Formulating such a coordination problem in a
constrained optimal control framework leads to an optimization
problem with a complexity that scales badly with the number of
vehicles. Hence, in this paper we consider an optimal scheduling
formulation and study the cost and constraints functions of the
resulting optimization problem. Interesting properties of the cost
and constraints functions are shown that can be used to formulate
lower complexity problems leading to suboptimal approximated
solution of the original problem.

I. INTRODUCTION

In this extended abstract we consider the coordination of co-
operative, autonomous vehicles at a road intersection. In general,
aspects of the problem relates to the study of communication
networks, environment perception/estimation and control. How-
ever, we will focus our attention solely on the latter and in
particular on an optimal control formulation of the problem. The
coordination scenario we consider is sketched in Figure 1a and
can be stated as follows: A set ofN vehicles have to cross a road
intersection, each traveling along a predefined path. The speed of
each vehicle has to be adapted in order to minimize a global cost
function (e.g., the sum of local costs) while fulfilling physical
constraints and avoiding collisions between vehicles. We start
by modeling the road intersection and formulating a constrained
optimal control problem, which solves the coordination problem,
in Sections II and III, respectively. Even in case of simple
vehicle modeling, solving the resulting non-convex constrained
optimization problem can be computationally demanding. The
collision avoidance constraints introduce a total number of N !
possible crossing orders. Hence, the worst case time complexity
of any algorithm evaluating all possible crossing orders would
grow as O(N !). Lower complexity approaches have been pro-
posed in [3], where an approximated feasible solution is found
but optimality is not addressed, or in [2] where the optimality of a
generic sequential coordination policy is studied. Similar works
are found in [1] or [4]. Our objective in this manuscript is to
translate the optimal control problem into an optimal scheduling
problem and to study the resulting optimization problem. In
Section IV, the coordination problem is broken down into a
scheduling (coordination) problem, determining the time instants
when each vehicle has to enter and clear the intersection, and N
local problems where each vehicle adapts its velocity profile to
occupy the intersection in the assigned time slot. The scheduling
problem is still a non-convex problem, while the local problems,

depending on the local cost functions and constraints, can be cast
as standard quadratic programs. After showing equivalence of
the optimal scheduling formulation and the original constrained
optimal control problem, we focus on the local costs, showing
important quasi-convexity properties. In Section V, a numerical
example illustrates the obtained results while Section VI closes
the paper by explaining how the obtained results can be used to
build approximated solutions of the original constrained optimal
control problem.

II. MODEL

We consider a scenario where N ∈ Z+ vehicles, termed
systems in the remainder of the paper, approach a traffic inter-
section. The paths of the vehicles through the intersection are
predefined and assumed known, due to which we consider only
the one dimensional motion along the path.

A. Dynamics

We restrict our study to the LTI case, where the motion of each
system i ∈ N = 1, ..., N is described on the form

ẋi(t) = Aixi(t) +Biui(t),

yi(t) = Cixi(t).
(1)

Here, Ai ∈ Rni×ni , Bi ∈ Rni×mi and Ci ∈ R1×ni for
some integers ni,mi > 0, and the scalar output yi(t) is the
position along the path of system i. Further, we assume that
ui(t) is continuous, that the pair (Ai, Bi) is controllable, and
that the state and control trajectories are constrained by linear
inequalities arising from, e.g., actuator limitations and traffic
rules, so that

xi(t) ∈ Xi = {y(t) |Giy(t) ≤ bi, ∀t},
ui(t) ∈ Ui = {v(t) | Fiv(t) ≤ di, ∀t},

(2)

for some Gi ∈ Rki×ni , bi ∈ Rki , Fi ∈ Rp×mi , di ∈ Rpi
and integers ki, pi > 0. Additionally, we only consider strongly
output monotone systems, i.e., systems such that

ẏi(t) = Ciẋi(t) ≥ ε, ∀t, (3)

for some ε > 0. Consequently, given an initial condition x(0) =
x0, solutions to (1), for which the above mentioned restrictions
are satisfied, belong to the following set of functions

D(x0) =
{[
xT (t), uT (t)

]T | (1), (2), (3), x(0) = x0
}

(4)



B. Intersection and Collision Modelling

We model the intersection as a closed and compact subset of
positions along the path of each system, defined by a lower limit
Li and a upper limit Hi, as depicted in Figure 1b. A system is
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Fig. 1: A vehicle coordination problem at a cross intersection.

therefore inside the intersection at all times t such that

xi(t) ∈ Ei = {z | Li ≤ Ciz ≤ Hi} . (5)

It follows from (3) that the time instance at which the system
with the state trajectory xi(t) enters the intersection, uniquely
can be defined as

τi = t : Cixi(t) = Li, (6)

and the time instant at which it exits the intersection as

ξi = t : Cixi(t) = Hi. (7)

For any feasible state trajectory xi(t) the times t for which (5)
holds lie in the closed and compact occupancy time interval
[τi, ξi], i.e., t ∈ [τi, ξi] ⇔ xi(t) ∈ Ei. The requirement
for collision avoidance is that two vehicles can not occupy the
intersection simultaneously, i.e., that all trajectories xi(t), i ∈ N
are such that

[τi, ξi] ∩ [τj , ξj ] = ∅, ∀i, j ∈ N , i 6= j, (8)

or equivalently[
xTi (t), xTj (t)

]T
/∈ Ei × Ej , ∀t, ∀i, j ∈ N , i 6= j, (9)

where × denotes the cartesian product.

III. OPTIMAL CONTROL FORMULATION

Consider the following local performance criteria:

Ji(xi(t), ui(t)) =

∫ tf

0

Λi(xi(t), ui(t))dt, (10)

where Λi(xi(t), ui(t)) is convex in xi(t), ui(t), with fixed time
horizon tf > 0, for all i ∈ N . The problem of finding the

optimal state trajectory and control can then be formalized as

min
xi(t),ui(t),i∈N

N∑
i

Ji(xi(t), ui(t)) (11a)

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i), ∀i ∈ N (11b)

x(t) /∈
N∏
i=1

Ei, ∀t (11c)

where x(t) = [xT1 (t), ..., xTN (t)]T and
∏

is the cartesian prod-
uct. Note that the collision avoidance condition (11c) renders
the problem non-convex. More precisely, certain regions in the
interior of the joint state space x(t) are excluded from its domain.

IV. PROBLEM ANALYSIS

Consider the following N + 1 problems:

min
τi,ξi,i∈N

N∑
i

Fi(τi, ξi)

s.t. [τi, ξi] ∩ [τj , ξj ] = ∅, ∀i, j ∈ N , i 6= j.

(12a)

Fi(τi, ξi) = min
xi(t),ui(t)

Ji(xi(t), ui(t))

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i),

Cixi(τi) = Li,

Cixi(ξi) = Hi

(12b)

The local problem (12b) establishes how each vehicle should
pass the intersection given that a certain occupancy interval
[τi, ξi] is allocated to it, whereas (12a) is the global coordination
problem allocating the occupancy time slots to each vehicle. We
want to emphasize that Fi(τi, ξi) is the optimal value of the
objective function in (12b), with minimizers satisfying the entry
and exit time requirements. Further, Fi(τi, ξi) is defined only
for τi and ξi such that x(t), u(t) feasible in (12b) exist. This
means that the domain DFi

of Fi(τi, ξi) is implicitly given by
the feasible set in the right hand side of (12b).

Lemma 1. The optimization problems (11) and (12) are equiva-
lent.

Proof: (Sketch) First we note that both problems are
non-convex and have more than one solution in general. Let
τ∗i , ξ

∗
i , i ∈ N be minimizers of (12) and x∗i (t), u

∗
i (t), i ∈ N be

minimizers of (11). Further, let τ̄i, ξ̄i be the entry and exit times
associated with x∗i (t), u

∗
i (t) and zi(t), vi(t) be the minimizers

in the right hand side of (12b) given τ∗i , ξ
∗
i . Then, as solutions of

(12) satisfies (8) and solutions to (11) satisfies (9), and since the
two collision avoidance conditions are equivalent, we must have
that τ̄i, ξ̄i is feasible in (12) and zi(t), vi(t) is feasible in (11).
Thus, we can conclude that

Fi(τ
∗
i , ξ
∗
i ) ≤ Fi(τ̄i, ξ̄i) (13)

Ji(xi(t)
∗, u∗i (t)) ≤ Ji(zi(t), vi(t)) (14)

Then, since by definition Ji(xi(t)
∗, u∗i (t)) = Fi(τ̄i, ξ̄i) and

Ji(zi(t), vi(t)) = Fi(τ
∗
i , ξ
∗
i ), we must have Fi(τ

∗
i , ξ
∗
i ) =

Fi(τ̄i, ξ̄i). Since the relationships between the decision variables



in the respective problem are unique, we therefore have that the
two problems are equivalent.

This implies that given explicit knowledge of Fi(τi, ξi) and
its domain DFi

, the coordination can be made without direct
consideration of the dynamics. To solve (12a) it is therefore
paramount to fully understand both Fi(τi, ξi) and DFi

. In the
following two subsections some of the important properties of
DFi

and Fi(τi, ξi) will be investigated. For brevity, the system
index i will be dropped in the treatment.

A. Domain of F (τ, ξ)

From (2) we have that actuation is limited, whereby we
with the monotonicity in (3) can conclude that there must
exist an earliest and latest time at which the intersection can
be entered. From this, we can state that τ ∈ [T l, Th], for
some T l and Th resulting from application of the maximum
and minimum admissible controls respectively. Similarly, for a
given τ ∈ [T l, Th] some degree of freedom exits as to when
the intersection is exited. However, the range of possible exit
times will clearly change for different τ , due to which we state
that ξ(τ) ∈ [gl(τ), gh(τ)], with gl(τ), gh(τ) resulting from
application of maximum and minimum admissible controls on
t ≥ τ . We can subsequently state that DF must be such that

DF ⊆ S =
{
τ, ξ |τ ∈

[
T l, Th

]
, ξ ∈

[
gl(τ), gh(τ)

]}
, (15)

after which we give the following lemma

Lemma 2. τ, ξ ∈ DF ⇔ ∃[x(t), u(t)] ∈ D(x0)

The proof is omitted, but follows directly from the convexity
of D(x0) and the monotonicity of Cx(t). The important impli-
cation of Lemma 2 is that DF = S and as such, that it is closed
and compact.

B. Characterization of F (τ, ξ)

Considering the function F (τ, ξ), we first note that it is
a composition of continuous functions and hence continuous.
Secondly, we present the following, expected result.

Lemma 3. F (τ, ξ) has a unique minimum in [T l, Th]

The proof is omitted here, but follows directly from the strict
convexity of the right hand side in (12b). In preparation of the
main result of this section stated in Theorem 1, we state the
following reduction of the local problem (12b):

min
x(t),u(t)

J(x(t), u(t))

s.t. [xT (t), uT (t)] ∈ D(x0)

Cx(τ) = L.

(16)

In (16), only a specified entry time is enforced, and the exit
time is unspecified, as opposed to (12b) where both entry and
exit times are enforced. Denoting the minimizer of (16) as
x∗τ (t), u∗τ (t), where the subscript denotes the enforced entrance
time, we then proceed to define the entry-exit time relationship
of the minimizer as a function of τ .

Definition 1. Optimal exit time g∗(τ) = t : Cx∗τ (t) = H.

It can be shown that g∗(τ) is continuous and, with τ∗, ξ∗ as
the unique minimizers of F (τ, ξ), that g∗(τ∗) = ξ∗. This means
that g∗(τ) passes through the unique minimum of F (τ, ξ) and
from Lemma 3 it then follows that F (τ, g∗(τ)) has a unique
minimum in τ∗. With this we are ready to state the main result
of this section:

Theorem 1. For strongly output monotone systems F (τ, g∗(τ)),
given by (12b), is quasi-convex.

Proof: (Sketch) Firstly, we will show that F (τ, g∗(τ)) is
monotonically increasing in deviations from its minimum in τ∗.
Let τ∗ < α < β < TH , and define a relaxation of (16) as

minimize
x(t),u(t)

J(x(t), u(t))

s.t. [xT (t), uT (t)] ∈ D(x0),

Cx(τ) ≤ L,

(17)

i.e., a problem which allows later entry times, and denote its
optimal trajectories for the state and control z∗τ (t) and v∗τ (t)
respectively. Note the the subscript indicates the entrance time
value used. Then, since α 6= τ∗ we know that the corresponding
minimizers of (16) will differ. Consequently, in (17), the inequal-
ity Cx(τ) ≤ L will be active and at the minimum z∗α(t) we will
have Cz∗α(α) = L. It then follows that x∗α(t) = z∗α(t), v∗α(t) =
u∗α(t) and J(z∗α(t), v∗α(t)) = J(x∗α(t), u∗α(t)) = F (α, g∗(α)).
Then, since Cxβ(β) = L, α < β and Cx(t) is monotone,
we must have that Cx∗β(α) < L and therefore x∗β(t), u∗β(t)
is feasible in (17) with τ = α. Since (17) is strictly convex,
and monotonicity gives that x∗β(t) 6= z∗α(t) ,u∗β(t) 6= v∗α(t) we
must therefore have that J(z∗α(t), v∗α(t)) < J(x∗β(t), u∗β(t)) =
F (β, g∗(β)) and consequently also F (α, g(α)) < F (β, g(β))
for all τ∗ < α < β < Th. Similar results hold for T l < β <
α < τ∗, by reversing the inequality in (17). We can therefore
conclude that F (τ, g∗(τ)) is strictly monotone in variations of τ
away from τ∗, due to which quasi convexity follows.

V. NUMERICAL EXAMPLE

For illustration we provide an example on how DF and
F (τ, ξ) can look like for a single vehicle with the characteristics
introduced in Section II. We use single input double integrator
dynamics with input constraints. The cost is taken as Λ =
(vref−Cẋ(t))2Q+u2(t)R, where vref is some reference veloc-
ity. The dynamics (A,B) are uniformly discretized to (Ad, Bd)
and (12b) formulated as a quadratic program over the (discrete)
horizon H . As a consequence of discretization, the entrance and
exit times can be enforced only on integer multiples of the basic
discretization period. Therefore [T l, Th] is computed here as

T l = min
k:Cxmax(k)≥L

k, T l = max
k:Cxmin(k)≤L

k, (18)

where {xmax(k)}Hk=1, {xmin(k)}Hk=1 are retrieved from the
sequences obtained by the map

x(k+1) = Adx(k)+Bdū, ∀k ∈ [1, H], x(0) = x0, (19)

using ū = umax and ū = umin, respectively. Given an entrance
time τ ∈ [T l, Th], the computation of [gl(τ), gh(τ)] is done ac-
cording to (18), using sequences {xmax(k)}Hk=1,{xmin(k)}Hk=1



defined by the following two step procedure: 1) The sub-
sequences {xmax(k)}τk=1, {xmin(k)}τk=1 are computed us-
ing linear programming with the objective to maximize
and minimize the velocity at k = τ , respectively; 2)
{xmax(k)}Hk=τ+1, {xmin(k)}Hk=τ+1 are obtained through

x(k + 1) = Adx(k) +Bdū, ∀k ∈ [τ + 1, H] (20)

using ū = umax and ū = umin, respectively. The following
problem is then solved repeatedly using CPLEX to cover all
feasible values of τ, ξ:

minimize
x(k),u(k),k=1,...,H

H∑
k=1

Λ(x(k), u(k))

s.t. x(k + 1) = Adx(k) +Bdu(k)

u(k) ∈ [umin, umax],

Cx(τ) = L, Cx(ξ) = H

(21)

The results for a particular instance are given in Fig. 2, obtained
by solving 7162 instances of (21) over a grid of feasible τ, ξ.
The numerical example supports the theoretical results presented
in Section IV and the quasi-convexity of the local cost F (τ, ξ)
is clearly demonstrated. In this example, the vehicle starts at
position 0, at its reference velocity 70 km/h. The intersection
starts after 50 m and ends after 70 m. The cost weights are
set as Q = R = 1 and the control is bounded to lie within
[−3, 4] m/s2. The horizon is set to tf = 5 s and is discretized
into H = 600 steps.
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Fig. 2: Visualization of F (τ, ξ) retrieved by solving (21) for all
feasible values of τ, ξ. The curve given by g∗(τ) is drawn in bold
red, and the minimum is marked with a red dot.

VI. SUMMARY AND OUTLOOK

In this extended abstract we have considered the problem
of coordinating the vehicles crossing a road intersection and
formulated it in a constrained optimal control framework. We
have shown how to decompose the optimal control problem into
a number of smaller subproblems. One coordination problem
assigns occupancy time slots to each vehicles, i.e., time instants
when each vehicle has to enter and clear the intersection, re-
spectively, that minimize a cost function. Local problems are

then solved to find control input trajectories leading to the as-
signed occupancy time slots. Further, we have shown important
properties of the cost and constraint functions of the local and,
therefore, the coordination problems. The obtained results will
be used to approximate F (τ, ξ) and DF and thus formulate a
more tractable coordination problem. Further, we have studied
and given results on a particular reduction of DF , obtained by
fixing a relationship between τ and ξ. More precisely, given the
entry time τ each vehicle choose their locally optimal exit time
g∗(τ). Comparing the original local problem (12b) with (16) one
can then conclude that, under such a reduction, a vehicle can
only cooperate before it reaches the intersection, and will resort
to a “selfish” behaviour once inside. Moreover, preliminary
results indicate that g∗(τ) is strictly monotone and could be
conveniently upper bounded with a linear approximation g̃(τ),
thus allowing slightly longer occupancy times than needed for
local optimality. Similarly, the quasi-convexity of F (τ, g∗(τ))
suggests to approximate it with a convex function F̃ (τ), e.g., a
second order polynomial, centred around its unique minimum.

A convenient formulation of the approximate coordination
problem would then be

minimize
τi,i∈N

N∑
i=1

F̃i(τi) (22a)

s.t. τi ∈ [T li , T
h
i ] (22b)

[τi, g̃i(τi)] ∩ [τj , g̃j(τj)] = ∅,∀i, j, i 6= j (22c)

where (22a) is the approximated cost, (22b) ensures that the
solution is locally feasible and (22c) ensures collision avoidance.
The advantage of using such an approach is that the local costs
and optimal exit times can be computed a priori. In cooperative
scenarios, sharing the approximations F̃i(τi), g̃(τ) and the inter-
val of feasible entry times [T l, Th] with a central computational
unit can thus be stated as prerequisites for participation. The
optimization in (22) can be stated as a single machine optimal
scheduling problem with individual deadlines and release times
and job lengths depending on their starting time. To the best
of our knowledge, such problems have neither been classified
in terms of complexity nor has any efficient algorithm been
proposed. For these reasons, it is our intention to address both
issues in future work.
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