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Abstract—A least restrictive supervisor for vehicle collision
avoidance is a control algorithm that can detect an unsafe
manoeuvre by a set of human-driven or autonomous vehicles,
intervening with a corrective action only when needed to avoid a
collision. It can help prevent collisions, and facilitate coexistence
of autonomous and human-driven vehicles. Such an algorithm is
based on a formal verification problem which, unfortunately, is
known to be NP-hard in many cases of interest, for instance at
traffic intersections. Here we propose a strategy to dynamically
decompose the formal verification problem of a large road
network, exploiting vehicle dynamics and the constraints induced
by road topology to separate non-conflicting vehicles. We split the
global problem into smaller and treatable subproblems, while still
allowing to compute an exact solution. We illustrate our results
on three different scenarios.

Index Terms—Multiagent systems, intelligent transportation
systems, distributed control, connected vehicles, capture set, su-
pervisory control, vehicle collision avoidance, intersection control.

I. INTRODUCTION

Automation is revolutionizing vehicle dynamics. By trad-

ing the direct links between driver and actuators for digital

systems that modulate driver commands, it can turn even

the most clumsy driver into a fairly good chauffeur, or race

pilot, depending on parameters setup. The trend has been

going for decades, but is gaining momentum now that cheap

sensors, embedded computation, and vehicular communication

technologies are reaching the market. The natural evolution

is to use automatic control to improve a car’s behaviour not

only in terms of dynamics, but in relation to its surroundings.

The first signs of this evolution are on all newest car models,

which employ arrays of sensors to detect nearby objects,

either to implement emergency braking and safety-distance-

keeping or, in some cases, to allow for autonomous driving

in sufficiently simple scenarios (such as on a highway). A

leap forward in this new trend of automotive technology will

take place once vehicle-to-vehicle and vehicle-to-infrastructure

communications will become widespread. A connected vehi-

cles environment enables situational awareness beyond what a

single vehicle’s sensors could ever provide: it can allow more

time to plan a car’s reaction to an unexpected event or to warn

the driver about it, and it provides the means to coordinate

the behaviour of multiple cars and improve their collective

dynamics [1]–[4].

In the context of automatic control for collision avoidance,

the connected vehicles environment is a much needed oppor-

tunity to design safety systems that exploit coordination of

multiple vehicles. Rear-end collision avoidance is reasonably
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handled by enforcing a safety distance against the worst-case

manoeuvre of each vehicle’s predecessor, but the competitive

paradigm falls short when it comes to handling junctions

and intersections (and therefore in most complex city traffic

scenarios). In this context, the coordinated action of multiple

vehicles is paramount for an effective safety system. Coordina-

tion is not, however, the only hurdle. In the presence of human

drivers, a major theoretical challenge is to precisely distinguish

a safe, if maybe daring, driving behaviour, from an unsafe one.

In a multi-vehicle scenario, and without the help of the many

visual hints that allow a human driver to guess the intention

of its neighbours, the design of a control system capable of

preventing collisions without reacting unnecessarily to normal

driving behaviour is a tough problem.

Control theory provides an elegant mathematical framework

to address these challenges, in the shape of formal verification

and least restrictive supervisor design [5], [6]. A least restric-

tive supervisor for collision avoidance is a control algorithm

that takes as input a command from its user (in our case, a

command from the human driver or, in the future, from the

autonomous car driving logic), and returns as output the same

command, if it is safe, or a corrected one. Most importantly,

the correction is applied only when necessary to prevent a

collision, thus avoiding by design any unnecessary interven-

tion. The mathematical tool used to distinguish safe and unsafe

commands is the formal verification of a mathematical model.

Given a model of the system (for instance, of a set of cars),

the set of configurations that correspond to collisions is called

the bad set [7], [8], while the set of configurations from which

entering the bad set is unavoidable is called the capture set

(or the backward reachable set of the bad set [9], [10]). A

command issued by drivers is safe, and therefore accepted

by the supervisor, if it keeps the system out of the capture

set; when this is not the case, the supervisor must compute a

correction that prevents the system from crossing the boundary

of the capture set; the problem of distinguishing between the

two cases is a verification problem.

Computation of the capture set in a multi-vehicle system

was proved to be NP-hard in [11], [12], therefore most

verification algorithms are only applicable to fairly small

systems (about 2 to 6 vehicles in [8], [12]–[17]) unless

approximations are employed [8], [18] or vehicle dynamics is

greatly simplified [19]–[22]. In the context of a road network

the task of designing a least restrictive supervisor might seem

hopeless. Fortunately the problem structure provides a natural

way to decompose the task into smaller, treatable subproblems.

An intuitive idea is to design controllers that register vehicles

approaching an intersection and supervise them until they

have left the intersection, delegating collision avoidance away

from intersections to a lower-level control. Typically some
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conditions must be required on vehicle speed and spacing as

they approach the intersection to ensure nonblockingness of

the control algorithm. This is the spirit of the work in [4],

[23]–[28].

In this paper we follow a different strategy, and discuss a

way to dynamically partition vehicles into groups that need to

be jointly supervised, irrespective of their location in the road

network. Our main contribution is in discussing an approach to

the decomposition of a road-network verification problem into

subproblems, such that the exact solution of all subproblems

yields an exact solution of the main problem. We show how the

results obtained in [8] for a single intersection can be applied,

without modifications, to a road network, and more in general

prove that the verification approach of [5], [6] can be applied,

without any approximation, to large road networks under mild

assumptions. As we discuss in Section VII, our strategy has

the added benefit of providing a problem decomposition that

clusters together only geographically close vehicles, a feature

useful for any practical implementation.

Our approach is based on the concept of guaranteed hull:

this is a time-dependent set that is guaranteed to contain at

least one safe trajectory, when one exists. Intuitively, a simple

decomposition strategy for a supervisor for collision avoidance

would be to decouple sets of vehicles with nonintersecting

forward reachable sets. This is essentially the strategy behind

most market-ready emergency braking systems. The (finite

horizon) forward reachable set of a vehicle is relatively

simple to compute, and obviously trajectories of groups of

vehicles with nonintersecting reachable sets can be verified

independently; however the decoupling strategy is useless

when most reachable sets intersect, as is the case in virtually

all complex road network scenarios. The guaranteed hull is

an improvement on this intuition; it shares the simplicity of

computation of the reachable sets, while allowing the designer

to define a useful partitioning strategy.

The guaranteed-hull approach stands on the assumption that

paths followed by all cars are known. This is a restrictive

assumption, but road rules and inference methods [29]–[31]

allow to predict the (short term) path of a car, and uncertainty

between a small number of possible paths can be handled with

moderate additional complexity.

We introduce the problem in Section II, then formalise

the concepts of guaranteed hull and independent partition in

Sections III. In Section IV we explain how these can be used

to define a distributed supervisor. In the remaining sections we

provide example implementations of the general idea in three

scenarios of increasing complexity.

II. PROBLEM DEFINITION

We consider a road network where human-driven or au-

tonomous vehicles move on a set of intersecting paths; oc-

casional failure in the coordination of some vehicles (human

driver distraction or poorly handled interaction between au-

tonomous and nonautonomous vehicles) may cause the issue

of unsafe control inputs, which would cause a collision. Each

vehicle i is modelled as a point mass with dynamics

ẍi = f(ẋi, ui), (1)
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Fig. 1. Five vehicles on intersecting paths P1, . . . ,P5. The red regions
identify the conflict regions Ik , while the black shaded region identifies an
overlapping interval Oi,j between the paths of the cyan and purple vehicle.

where xi ∈ R is the position of the vehicle along its path and

ui ∈ R
m is the control input. We call xi := (xi, ẋi) the state

of vehicle i, and use the symbols x and u (with no subscript)

to indicate the aggregate state and input of all vehicles; x(t,u)
denotes the state reached at time t with input u, starting from

x(0). The terminology introduced next is illustrated in Fig. 1.

We assume that the road network is planar (an extension to a

3D structure, for instance to allow overpasses, is quite simple),

and call

Pi : R → R
2

the path followed by vehicle i on the plane. yi := Pi(xi)
is the position of vehicle i on the plane, when its arclength

coordinate along the path is xi. Vehicles are assumed to always

move in the increasing direction of x, so that ẋi ≥ 0. Vector

y denotes the aggregate positions of all vehicles.

A collision between vehicles may only take place at points

where their paths overlap, and may take one of two forms: a

rear-end collision, when two paths overlap over an interval and

vehicles approach each other below a minimum safe distance;

a side collision, when two vehicles traverse simultaneously a

conflict region. Call Oi,j ⊂ R
2 a closed segment of the real

line with nonempty interior, embedded in R
2, where paths

Pi and Pj overlap. Vehicles on overlapping path intervals are

assumed to move in the same direction. Given a set of vehicles

travelling on a common path interval, we call first vehicle the

vehicle that drives in front of the set, and last vehicle the

one that drives in the back. Given an enumeration 1, . . . , n of

vehicles on a common path interval, we say that they are in

topological order if 1 is the first vehicle, 2 is the second, and so

on. Given an interval Oi,j and two vehicles with yi, yj ∈ Oi,j ,

we call D(yi, yj) ∈ R the distance between yi ∈ Pi and

yj ∈ Pj measured along the paths. We denote by

B− := {y ∈ R
2n : yi, yj ∈ Oi,j ,D(yi, yj) < d}

the subset of R
2n of the rear-end collision points. Call Ik
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an open region around the k-th intersection in the road net-

work, representing a conflict region, where the simultaneous

presence of two vehicles on different paths would constitute a

side collision. We denote by

B+ :=
{

y ∈ R
2n : yi, yj ∈ Ik \ Oi,j

}

the subset of R
2n of side-collision points. Finally, we define

the bad set

B := B+ ∪B−.

The main objective of this paper is to design a distributed

least restrictive supervisor, numerically implemented as a

discrete-time algorithm with time step τ . The supervisor is

a map S : (x,v, {Pi}) 7→ u, from the states xi and paths Pi

of all vehicles, and from the set v of all inputs that the vehicle

drivers request (by acting on brake and accelerator), to the set

of inputs u that the cars are allowed to use. The supervisor is

called

• Least restrictive: if, whenever u 6= v, returning u = v

would inevitably result in a future collision.

• Distributed: if it can be defined as a set of algorithms

running simultaneously on different processors, with min-

imal exchange of information between processors.

At time t, a partitioning algorithm (distributed among cars)

takes care of forming vehicle clusters that can be supervised

separately. The state reached at t + τ with input u = v is

predicted using a mathematical model. Then, a verification

algorithm (distributed among clusters) checks whether the

predicted state admits a safe future evolution or not; in case

of a negative answer, an override input is used instead of the

user-requested one for all vehicles in the cluster that failed

verification. The design of such a supervisor requires to solve

the following verification problem:

Verification Problem – VP Given a set of paths {Pi} and

initial conditions x, determine if there exists an input signal

u that guarantees that y(t,u) /∈ B for all t ≥ 0.

We write x ∈ VP if VP has a positive answer for initial

conditions x.

Design of least-restrictive supervisors for road intersection

scenarios was treated for instance in [8], [12], [14], [15], [20],

[22], [32]–[35]. While most of the cited results can be used in

the verification step, focus of this paper is on how to construct

a partition of vehicles to ensure that exact verification on the

clusters yields exact verification of the whole network, without

the need to exchange information between different clusters.

To formalise this, call κ := {C1, . . . , Cc} a partition of the

set of vehicles into the clusters C1, . . . , Cc. We denote with a

subscript C the restriction of a vector or set to the vehicles in

cluster C; for instance xC is the aggregate state of all vehicles

in cluster C, while VPC is VP restricted to vehicles in C.

Definition 1. A partition κ := {C1, . . . , Cc} is independent if
(

xC ∈ VPC , ∀C ∈ κ
)

⇔
(

x ∈ VP
)

Definition 2. A partition κ := {C1, . . . , Cc} is time-τ inde-

pendent if, for all t ∈ [0, τ ] and for all u ∈ U ,
(

xC(t,u) ∈ VPC , ∀C ∈ κ
)

⇔
(

x(t,u) ∈ VP
)

In other words, a time-τ independent partition is a partition

which is guaranteed to remain independent for a time τ , for

any possible evolution of the state x. Even though it is suffi-

cient to obtain a (time-0) independent partition to decompose

VP, it is necessary to obtain a time-τ independent partition

to ensure that a decomposition computed at time t is still

independent at time t+ τ . This is necessary to implement the

discrete-time supervisor mentioned before, which we introduce

in Sec. IV.

Given a control signal u defined over the time interval

[0,∞), we call u[t1,t2] the restriction of u to the time interval

[t1, t2]. We use the symbol
⌊

u[t1,t2),u[t2,t3), . . .
⌋

to write the concatenation of multiple input signals defined

over nonoverlapping time intervals. We use the elementwise

inequality sign for vectors: x ≥ x
′ means that each element

of x is greater than or equal to the corresponding element of

x
′. The same notation is used for u. We call

Us(x) := {u ∈ U : y(t,u) /∈ B, ∀ t ≥ 0}, (2)

where y(t,u) := P(x(t,u)), the set of safe inputs, that is, all

control choices which do not cause a collision when vehicles

have initial state x. Similarly,

Us(xC) := {uC ∈ UC : yC(t,uC) /∈ BC , ∀ t ≥ 0} (3)

is the set of safe inputs for vehicles in cluster C with initial

state xC .

III. PARTITIONING ALGORITHM AND DISTRIBUTED

NETWORK SUPERVISOR

The partitioning algorithm that we are about to define is

based on the concept of guaranteed hull. Consider a set-valued

function Ii(t) : R+ → 2R
2

, which attaches to a time t a subset

of R2. Take the vector IC(t) := {Ii(t)}, i ∈ C.

Definition 3. IC(t) is a guaranteed hull for cluster C if,

whenever Us(xC) 6= ∅, there exists at least one uC ∈ Us(xC)
such that yi(t, ui) ∈ Ii(t), for all t ≥ 0 and for all i ∈ C.

In simple terms, a guaranteed hull is a time-dependent set

which, when Us(xC) is nonempty, contains at least one safe

trajectory yC(t,uC), uC ∈ Us(xC). A concrete definition

of guaranteed hull requires further assumptions (e.g., vehicle

model, geometry of paths). For fully specified examples we

refer the reader to equation (7) in Section V, and its subsequent

redefinitions in Sections VI and VII.

Algorithm 1 computes a partition of the vehicles using

guaranteed hulls. In the algorithm, we use the guaranteed hull

I{i,j} for pairs {i, j} of vehicles, and the bad set B{i,j} relative

to a cluster C := {i, j}.

Theorem 1. Algorithm 1 terminates and finds an independent

partition.

Proof: Part 1: the algorithm terminates.

At each iteration of the algorithm, either the number of clusters

in κ remains the same (in which case the algorithm returns the

partition κ), or it is reduced. Since the number of clusters is
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Algorithm 1 Partitioning algorithm

1: procedure Partition(x)
2: Define a partition κ where all vehicles are singleton clusters
3: Tag all clusters not done
4: while there exists a cluster not done do

5: Compute IC for all C ∈ κ
6: Form a new partition κ′ by merging all Ca, Cb ∈ κ

such that ∃ t, i ∈ Ca, j ∈ Cb :I{i,j}(t) ∩ B{i,j} 6= ∅
7: Tag as done all clusters that were not merged (i.e. those

that were not modified between κ and κ′)
8: Set κ = κ′

9: return κ

finite it must eventually decrease to one. Once a single cluster

is left the algorithm terminates.

Part 2: κ is independent
(

x ∈ VP
)

⇒
(

xC ∈ VPC , ∀C
)

is trivial. To prove
(

x ∈ VP
)

⇐
(

xC ∈ VPC , ∀C
)

we proceed as follows.

First, note that xC ∈ VPC equals the condition Us(xC) 6= ∅.

Given Us(xC) 6= ∅ and since all IC are guaranteed hulls, by

Definition 3 for all C ∈ κ there exists a trajectory yC(t, ũC),
with yC(t, ũC) ∈ IC(t), such that yC(t, ũC) /∈ BC . This and

Line 6 of Algorithm 1 imply that
[

yCa
(t, ũCa

)
yCb

(t, ũCb
)

]

∩BCa∪Cb
= ∅, ∀ t ≥ 0,

for any pair Ca and Cb of clusters. This implies y(t, ũ) /∈ B,

for all t ≥ 0, and therefore x ∈ VP.

With n cars, the above algorithm terminates in at most n
steps. If Line 6 is executed by each car, which compares its

guaranteed hull with those of the cars of at most n− 1 other

clusters, the algorithm complexity is O(n2). If guaranteed

hulls are bounded for all t ≥ 0, complexity can be reduced

further, as we see next. Call ‖ · ‖ the Euclidean norm.

Hypothesis 1. There exists a finite value L such that

∀ i, ∀ t ≥ 0, and ∀ yi ∈ Ii(t), ‖yi − yi(0)‖ ≤ L.

A necessary condition for the above hypothesis is that

vehicles can be safely stopped in finite distance, i.e.,

when Us(xC) 6= ∅, there exist ūC ∈ Us(xC) such that

limt→∞ xi(t, ūi)− xi(0) ≤ L, ∀ i ∈ C.

Definition 4. Given two clusters C1 and C2, call

dist(C1, C2) := min
i∈C1

j∈C2

‖yi − yj‖.

Moreover, denote |Ik| the diameter of Ik, that is,

|Ik| := sup
yi,yj∈Ik

‖yi − yj‖.

Remark 1. Assume Hypothesis 1, and that the vehicles of

two clusters C1 and C2 are such that dist(C1, C2) > 2L +
max{d,maxk |Ik|}. Then at Line 6 of Algorithm 1, C1 and

C2 need not be compared.

Proof: The assumptions dist(C1, C2) > 2L +
max{d,maxk |Ik|} and Hypothesis 1 imply that, for all

yi(t) ∈ Ii(t) and yj(t) ∈ Ij(t), with i ∈ C1, j ∈ C2,

‖yi(t)− yj(t)‖ ≥ max{d,max
k

|Ik|}, ∀ t ≥ 0.

This means that, for all i ∈ C1 and j ∈ C2, I{i,j}(t)∩B{i,j} =
∅, ∀ t ≥ 0.

The above remark states that, when guaranteed hulls are

bounded (Hypothesis 1), Line 6 of Algorithm 1 can be

executed by only comparing cars in nearby clusters. Using the

same reasoning as in the above proof, we can give sufficient

conditions for Algorithm 1 to converge to a nontrivial partition.

Remark 2. Take cluster C1 and its complement C2, defined to

contain all vehicles not in C1. Assume that C1 and C2 satisfy

Remark 1. Then Algorithm 1 will not merge C1 with any other

cluster.

This formalises the intuition that, if a set of cars is suf-

ficiently far from all other cars, Algorithm 1 leaves it as a

separate cluster. Note that the assumption on dist(C1, C2) is

restrictive. In the following, with additional information on

vehicles dynamics and paths configuration, we will be able to

formulate less restrictive conditions.

The following definition extends the properties of the guar-

anteed hull defined before, to hold for any state reachable by

the system in a time τ .

Definition 5. IτC(t) is a time-τ guaranteed hull for cluster

C if, whenever Us(xC) 6= ∅, for all uC,[0,τ ] ∈ Us(xC) there

exists at least one uC,(τ,∞) ∈ Us(xC(τ,uC,[0,τ ])) such that

yi(t, ui) ∈ Iτi (t), for all t ≥ 0 and for all i ∈ C.

A time-τ guaranteed hull is thus a guaranteed hull for any

element of the safe reachable set
{

yC(t,uC) : uC ∈ Us(xC), t ∈ [0, τ ]
}

.

Note that, as expected, the above definition of IτC coincides

with the one in Definition 3 if τ = 0.

Theorem 2. The partition κ computed using Algorithm 1 and

IτC in stead of IC is time-τ independent.

Proof: The proof is similar to Part 2 of the proof of

Theorem 1.

In the rest of the paper we assume that Algorithm 1 is set

up to compute a time-τ independent partition.

IV. SUPERVISOR SYNTHESIS

Using the machinery introduced in the previous sections, we

can now define a distributed supervisor for a road network. The

supervisor must obviously possess the two basic properties of

correctness and nonblockingness, defined as follows.

Definition 6. We say that a supervisor S : (x,v, {Pi}) 7→ u

is correct if y(t, S(x(0),v(0), {Pi})) /∈ B for all t ∈ [0, τ ],
nonblocking if S

(

x(τ, S(x(0),v(0), {Pi}),v(τ), {Pi})
)

6= ∅.

We begin by defining, in Algorithm 2, a supervisor for

each one of the clusters obtained with Algorithm 1. Then,

in Algorithm 3 we show how the partitioning algorithm

(Algorithm 1) and the cluster supervisor (Algorithm 2) can

be used to jointly supervise the network.

In Algorithm 2, vC is the vector of desired inputs issued

by the drivers of vehicles in cluster C at each discrete time
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Algorithm 2 Supervisor of a cluster

1: procedure ClusterSupervisor(xC ,vC )
2: ūC(t)← vC ∀ t ∈ [0, τ ]
3: xC,next ← xC(τ, ūC ,xC)
4: if xC,next ∈ VPC and yC(t, ūC) /∈ BC for all t ∈ [kτ, (k+1)τ ]

then

5: return ūC

6: else
7: return uC,safe

step, while uC,safe is an input in Us(xC(kτ)), used by the

supervisor to override the desired input vC when necessary.

Computation of uC,safe is not discussed here, but numerically

efficient methods to compute a safe input for different traffic

scenarios are found in the literature [8], [16], [27], [38].

The algorithm assumes synchronous communication from all

vehicles; note however that asynchronous communication can

be handled quite simply, e.g., as explained in [36].

Theorem 3. Assume xC(0) ∈VPC . Then, the cluster supervi-

sor in Algorithm 2 is correct.

Proof: If the supervisor returns uC,safe, correctness is

guaranteed by definition. If it returns ūC , correctness is

explicitly checked at Line 4 by the condition yC(t, ūC) /∈ BC

for all t ∈ [kτ, (k + 1)τ ].

Algorithm 3 Supervisor of the network

1: procedure NetworkSupervisor(x, v)
2: while True do

3: κ = Partition(x) ⊲ defined in Algorithm 1
4: for all C ∈ κ do
5: uC = ClusterSupervisor(xC ,vC) ⊲ defined in

Algorithm 2

Theorem 4. The network supervisor in Algorithm 3 is correct

and nonblocking

Proof: Correctness: Let the network supervisor run with

time stepping τ . By Theorem 3, the cluster supervisor in

Algorithm 2 is correct, that is, it ensures that xC(t,uC) ∈
VPC for all t ∈ [0, τ ]. By Theorem 2 and Definition 2 this

implies that x(t,u) ∈ VP for all t ∈ [0, τ ], and therefore that

collisions are avoided for t ∈ [0, τ ]. The network supervisor

in Algorithm 3 is thus correct.

Nonblockingness: Consider x(τ,u) reached from x(0) in

a time step. Algorithm 3 is blocking if, at time τ , line 5

cannot be evaluated, which means that Algorithm 2 cannot

compute its output. We have x(τ,u) ∈ VP. By Theorem 2 and

Definition 2 this insures that, whatever partition κ is computed

at time τ , for all C ∈ κ, xC(τ,u) ∈VPC . Because of this, the

output of Algorithm 2 at time τ can always be computed (uC

exists), so Algorithm 3 is nonblocking.

The above results define a least restrictive supervisor for

the whole network which only requires computation on a

partition of the network. This is an important theoretical

result: it shows that the exact verification of a large road

network can be recast in the simpler problem of independently

verifying a number of vehicle clusters. The complexity of the

smaller problems depends on the number and configuration

of vehicles in each cluster. The coming sections show that,

in many cases, the resulting problems are simple enough for

an exact and real-time solution with existing computational

methods. The sections are organised so as to discuss scenarios

of increasing complexity. Exact and approximate algorithms to

test xC,next ∈ VPC at Line 3 of Algorithm 2 and to synthesize

uC,safe at Line 7 are discussed, for different road scenarios and

number of vehicles, in [8], [12], [37], [38] among others. The

simulations at the end of each section use the results of [8]

for this task.

V. SCENARIO 1: VEHICLES ON A LANE

We now apply the ideas described above to a simple

scenario where a set of vehicles move on a single path. The

results we obtain for this scenario are propaedeutic to the more

complex road network scenarios of the two following sections.

We assume all vehicles have the same dynamics: to simplify

notation we drop the index i when not needed.

Scenario 1. A set of N vehicles, with identical dynamics, drive

on the same path: Pi = Pj = Oi,j = P , ∀ i, j.

We make the following assumptions.

(A.1) there exists two elements umin and umax of U such that

umin ≤ u(t) and umax ≥ u(t) for all t and for all u ∈ U ,

and f(ẋi, ui) is non-decreasing in ui.

(A.2) system (1) has unique solutions, depending continuously

on initial conditions and parameters.

(A.3) ẋi is bounded to the interval [0, ẋmax], with ẋmax > 0.

(A.4) |f(ẋi, ui)| is bounded.

(A.5)
lim
t→∞

ẋi(t, umax) = ẋmax,

lim
t→∞

ẋi(t, umin) = 0
(4)

(min and max velocities are attained at least asymptoti-

cally by applying umin and umax).

As shown in [39], (A.1) implies

xi(0) ≥ x
′
i(0), ui(t) ≥ u′

i(t)∀ t ≥ 0
⇓

xi(t) ≥ x
′
i(t)∀ t ≥ 0.

(5)

and
xi(0) > x

′
i(0) and ui(t) ≥ u′

i(t)∀ t ≥ 0
⇓

xi(t) > x
′
i(t)∀ t ≥ 0

(6)

(recall that xi := (xi, ẋi)).
We can now construct the set IτC needed in Algorithm 1. We

begin by computing the minimum worst-case stopping distance

of a vehicle:

Definition 7. Dstop := limt→∞ xi(t, umin) with xi(0) = 0,

ẋi(0) = ẋmax.

Next, we define the worst-case difference between the

stopping distance when a braking manoeuvre is started at time

0, and when it is started at time τ :

Definition 8.

∆i,stop(τ) :=

max
ẋi(0)∈[0,ẋmax]

lim
t→∞

xi(t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

)− xi(t, umin).
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and

∆stop(τ) := max
i

∆i,stop(τ).

For sake of simplicity, in the following we drop the argu-

ment τ of ∆stop. The quantity ∆stop is an upper bound to

the difference in the stopping position of a vehicle applying

an arbitrary input for t ∈ [0, τ ] and then applying umin for

t > τ , or applying umin for all t ≥ 0. The sum of ∆stop

and Dstop provides an upper bound to the stopping distance

of a vehicle that is allowed to use an arbitrary input for a time

interval [0, τ ], as shown in the following remark.

Remark 3. Let the signal ui assume any value in the time

interval [0, τ ] and be equal to umin for t ≥ τ :

ui :=
⌊

ui,[0,τ ], umin,(τ,∞)

⌋

.

Then

lim
t→∞

xi(t, ui) ≤ xi(0) +Dstop +∆stop.

Proof: Using Definition 7, the fact that the vector field

(1) is invariant to translation in the position x, and (5), we

have

lim
t→∞

xi(t, umin) ≤ Dstop + xi(0)

while by Definition 8

lim
t→∞

xi(t,
⌊

ui,[0,τ ], umin,(τ,∞)

⌋

)− xi(t, umin) ≤ ∆stop.

Summing the two we obtain

lim
t→∞

xi(t, ui) ≤ xi(0) +Dstop +∆stop.

We now have all ingredients to define a guaranteed hull

for Scenario 1. Take a cluster C with vehicles numbered in

topological order, so that x1 > . . . > xn. Let P
(

[·, ·]
)

be the

set-valued image of P(xi) applied to all xi in the interval [·, ·].
Define

Iτi (t) := P
(

[xi(t, umin), xi(t, ūi)]
)

, (7)

where ūi is a bang-bang input

ūi(t) :=
⌊

umax,[0,t∗
i
], umin,(t∗

i
,∞)

⌋

(8)

switching at a time t∗i ≥ 0 so as to satisfy

t∗n := τ

and

t∗i := max
{

τ, t∗i s.t. lim
t→∞

xi(t, ūi) = lim
t→∞

xi+1(t, ūi+1) + d
}

.

The guaranteed hull IτC can be constructed as the Cartesian

product of Iτi defined above, for all i ∈ C.

Theorem 5. IτC defined above satisfies the property in Defi-

nition 5 for Scenario 1.

The above theorem, proven in the Appendix, states that IτC
can indeed be used to partition vehicles using Algorithm 1 in

this scenario.

Building on Remark 3, we can provide an upper bound to

the distance limt→∞ xi(t, ūi)−xi(0) travelled by an arbitrary

member of a cluster within the guaranteed hull.

Lemma 6. Consider a cluster C with vehicles on a single path

P . Name the vehicles 1, . . . , n, in topological order. If IτC(t)
is defined as in (7)–(8) and C is an element of a partition

formed using Algorithm 1, then

lim
t→∞

xi(t, ūi) ≤ xi(0) +Dstop +∆stop, ∀ i.

Proof: The proof is by induction. ū is defined in (8), and

for vehicle n, t∗n = τ and

ūn :=
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

.

By Remark 3,

lim
t→∞

xn(t, ūn) ≤ xn(0) +Dstop +∆stop. (9)

For vehicle n− 1, using (8) we have

lim
t→∞

xn−1(t, ūn−1) ≤

max
{

lim
t→∞

xn−1(t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

),

lim
t→∞

xn(t, ūn) + d
}

.

Again by Remark 3 we have

lim
t→∞

xn−1(t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

) ≤

xn−1(0) +Dstop +∆stop,

while using (9) and the fact that, having Us(x(0)) 6= ∅,

xn(0) + d ≤ xn−1(0), we obtain

lim
t→∞

xn(t, ūn) + d ≤ xn−1(0) +Dstop +∆stop.

The two above inequalities give

lim
t→∞

xn−1(t, ūn−1) ≤ xn−1(0) +Dstop +∆stop.

Iterating the above reasoning we complete the proof.

A consequence of this lemma is that, if a safe input

exists, then there exists one that stops all vehicles in at most

Dstop+∆stop. Using Lemma 6 we can improve the condition

of Lemma 2 to ensure a nontrivial partition. The improved

sufficient condition is schematized in Fig. 2 and described in

the following corollary.

x5 x4 x3 x2 x1

> Dstop +∆stop + d

x

Fig. 2. A sufficient condition for the two sets of vehicles C1 = {1, 2} and
C2 = {3, 4, 5} to be clustered separately is that x2−x3 ≥ Dstop+∆stop+d

Corollary 7. Consider two clusters C1 and C2 on a single

path and assume that xi(0) > xj(0), ∀ i ∈ C1, j ∈ C2. Name

n + m, . . . , n + 1 the vehicles of C2, and n, . . . , 1 those of

C1, in topological order. If IτC(t) is defined as in (7)–(8),

a sufficient condition for Algorithm 1 to return a nontrivial

partition is that xn(0)− xn+1(0) > Dstop +∆stop + d.

Proof: By Lemma 6, if xn(0) − xn+1(0) > Dstop +
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∆stop + d, then xn+1(t, ūn+1) + d ≤ xn(0), for all t ≥ 0.

Since n is the last vehicle of C1 and n+1 is the first vehicle

of C2,

Iτi,j(t) ∩Bi,j = ∅, ∀ t ≥ 0, ∀ i ∈ C1, j ∈ C2,

and Algorithm 1 will not merge the two clusters.

According to the above corollary, at Line 6 of Algorithm 1

vehicles of clusters father apart than Dstop +∆stop + d need

not communicate.

A. Simulation of Scenario 1

vehicle 1

vehicle 2

vehicle 3

vehicle 4

vehicle 5

t [s]

x [m]

0 1 2 3 4 5 6

20

40

60

80

100

120

Fig. 3. Simulation of Scenario 1 with x(0) =
((80, 3), (60, 10), (40, 10), (20, 3), (0, 10)). Trajectories of vehicles
in the same cluster are envelopped in background of the same color.
Trajectories are red when the supervisor is overriding the driver input,
black otherwise. Dotted vertical lines mark the times when the the partition
structure changes.

We show in Fig. 3 a simulation of the current scenario, with

vehicle longitudinal dynamics modelled as

ẍi = u− 0.0005ẋ2
i ,

where the quadratic term accounts for air drag, τ = 0.2 s, ui ∈
[−5, 2], ẋmax = 13.9 m/s, d = 5 m. The chosen parameters

give Dstop = 17.66 m, ∆stop = 2.78 m. We assumed in the

simulation that all drivers attempt to maximise their speed, by

requesting an input ui proportional to ẋi,max − ẋi. At time 0
vehicles are far apart, and Algorithm 1 places them in separate

clusters. Around t = 0.6 we have

lim
t→∞

x2(t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

) > lim
t→∞

x1(t, umin),

that is, vehicle 2 approaches vehicle 1 and the two are clustered

together. The same happens for vehicles 4 and 5. Around

t = 3.2 vehicle 3 joins the cluster of 1 and 2. Note that

the supervisor overrides the inputs of vehicles in each of

the clusters only for a short time between t = 1.8 and

2.8. Override intervals of the two clusters coincide due to

symmetry in the initial conditions and inputs of the respective

vehicles.

VI. SCENARIO 2: SINGLE ISOLATED INTERSECTION

Let us now consider a more complex scenario where a set

of paths intersect at a single point and multiple vehicles may

travel on each of the paths.

Scenario 2. A set of N vehicles drive on M different paths,

which intersect at a single isolated point, that is, for all

vehicles i and j,

Pi = Pj = Oi,j

or

Pi ∩ Pj 6= ∅ and Pi ∩ Pj ∈ I.

We assume that vehicles on the same path have identical

dynamics.

For each path Ph, let us call (ah, bh) the interval {x :
Ph(x) ∈ I}, and assume that bh − ah > d, for all h (i.e., the

width of the intersection along each path is greater than the

minimum safety distance between two vehicles on the same

path). We keep the formal definition of IτC used in the previous

section, as the Cartesian product of

Iτi (t) := Ph

(

[xi(t, umin), xi(t, ūi)]
)

but we define ūi differently depending on whether the vehicles

of a cluster are near an intersection or not, in a sense that is

explained next.

Assume that cluster C has n vehicles on path Ph, number

them in topological order so that 1 is the first and n is the last

of these vehicles. We must consider two cases:

(i) [xn(0), x1(0) + Dstop + ∆stop] ∩ (ah, bh) = ∅, i.e.,

vehicles in cluster C can safely stop before entering the

intersection, regardless of their current velocity and of

their input in the time interval [0, τ ] (see Lemma 6), or

they are all past the intersection;

(ii) [xn(0), x1(0) + Dstop + ∆stop] ∩ (ah, bh) 6= ∅, i.e.,

some vehicles within the cluster may not stop before the

intersection.

We proceed as follows:

• in case (i), define ūi as in (8),

• in case (ii) then:

– for all vehicles i such that xi(0)+Dstop+∆stop ≤ ah
(i.e., vehicles that can surely reach a full stop before

reaching the intersection, by Lemma 6), define ūi as

in (8); assume there are n−m such vehicles;

– for the remaining m vehicles, define ūi as a bang-

bang input

ūi(t) :=
⌊

umax,[0,t∗
i
], umin,(t∗

i
,∞)

⌋

(10)

switching at a time t∗i ≥ 0 so as to satisfy

t∗i := max
{

τ,

t∗i s.t. lim
t→∞

xi(t, ūi) = bh +Dstop + (m− i)d
}

.

Theorem 8. IτC(t) defined above satisfies the property in

Definition 5 for Scenario 2.

The above theorem is proven in the Appendix.
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To better understand how clusters are formed using the

above-defined guaranteed hull, consider the following prop-

erties.

Definition 9.

Pa : all vehicles of C are on the same path Ph

Pb : for all paths Ph, calling 1, . . . , n the vehicles of C on

Ph, [xn(0), x1(0) +Dstop +∆stop] ∩ [ah,k, bh,k] = ∅, ∀ k
Pc : there exists a unique intersection Ik such that, for all paths

Ph, calling 1, . . . , n the vehicles of C on Ph, [xn(0), x1(0)+
Dstop +∆stop] ∩ [ah,k, bh,k] 6= ∅

Pd : if C has vehicles 1 and n on a path Ph and x1 > xn,

then all vehicles i with xi ∈ [xn(0), x1(0)] belong to C.

All clusters formed by Algorithm 1 in this scenario either

have properties Pa∧Pb∧Pd (where ∧ is the logical and), or

have properties Pc ∧ Pd (a proof of this is given in Lemma

10 in the Appendix). In the first case, they can be treated as

an isolated set of vehicles on a single path, thus falling under

the umbrella of Scenario 1, discussed in the previous section.

In the second case they require the tools introduced in this

section.

The above properties help us formalise one more interesting

observation about the guaranteed hull for this scenario.

Lemma 9. Consider a cluster C with vehicles on a path Ph

and assume C has property Pc. Name 1, . . . , n, in topological

order, the vehicles of C in Ph with xi(0)+Dstop+∆stop ≥ ah.

If C was formed using Algorithm 1, then

lim
t→∞

x1(t, umin) ≤ bh +Dstop + (n− 1)(d+∆stop)

and

lim
t→∞

x1(t, ū1) ≤ bh+Dstop+∆stop+(n−1)(d+∆stop).

The proof of the above lemma is reported in the Appendix.

In simple terms, the lemma states that a cluster that handles

vehicles at an intersection (has property Pc) will never include

vehicles farther than Dstop + ∆stop + (n − 1)(d + ∆stop)
from the intersection along a given path, where n is the

number of vehicles the cluster has on the path. This pro-

vides a useful tool to decouple nearby intersections, as we

do in Scenario 3. It also allows to improve scalability of

Algorithm 1, stating that vehicles in a cluster with property

Pc need only to communicate with vehicles within a distance

Dstop +∆stop + (n− 1)(d+∆stop) of the intersection.

A. Simulation of Scenario 2

We simulate this scenario using the same model and pa-

rameters as in Scenario 1. Figure 4 portrays the trajectories

of 7 vehicles on a two-path example. Initially Algorithm 1

separates all vehicle in distinct clusters. At t = 2.4 both

vehicles 1 and 5 have [xi, xi +Dstop +∆stop]∩ (ah, bh) 6= ∅
(case (ii) in the definition of Iτi ). Algorithm 1 detects a

possible side collision, and merges them in the same cluster.

Vehicle 5 is soon forced to brake by the supervisor, to avoid

occupying the intersection at the same time as vehicle 1. At

t = 3.6 [x2, x2 + Dstop + ∆stop] ∩ (ah, bh) 6= ∅: vehicle 2
joins the same cluster and is forced to brake in order to avoid

ve
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e
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t [s]

x [m]

ah −Dstop −∆stop

0

00 11 122 44 6 8

5

100

150

Fig. 4. Simulation of Scenario 2 with two paths. Solid and
dotted trajectories are of vehicles on path 1 (vehicles 1 . . . 4)
and 2 (vehicles 5, 6, 7), respectively. Initial conditions are
x(0) = ((60, 10), (40, 10), (20, 10), (0, 10), (55, 10), (35, 10), (15, 10)).
The gray band represents the intersection along both paths, clusters and
supervisor override are represented as in Fig. 3.

a side collision with vehicle 5. At t = 3.8 vehicle 6 joins the

cluster as a consequence of the braking manoeuvre initiated

by vehicle 5 (when 6 joins the cluster it is still “far” from the

intersection: [x6, x6 +Dstop + ∆stop] ∩ (ah, bh) = ∅), and it

is soon forced to brake by the supervisor. At t = 4.8 vehicle

1 leaves the cluster. At t = 5 vehicle 7 joins the cluster due

to the braking manoeuvre of vehicle 6 and soon it is forced

to brake. At t = 5.2 [x3, x3 +Dstop +∆stop] ∩ (ah, bh) 6= ∅:

vehicle 3 joins the cluster and is immediately forced to brake

to avoid a side collision. At t = 6.2 vehicle 4 joins the

cluster, due to the braking manoeuvre of vehicle 3. At t = 6.6
and t = 7.2 vehicles 5 and 2, respectively, leave the cluster.

Note that these two vehicles travel more slowly and have

more successors in the same cluster than vehicle 1 had when

it left the intersection. Consequently, they leave the cluster

farther from the intersection than vehicle 1 did. At t = 8.4
vehicle 4 leaves the intersection and has no successors. As a

consequence the cluster is split in two, one containing vehicles

6 and 7, the other 3 and 4.

VII. SCENARIO 3: ROAD NETWORK

Scenario 3. A set of N vehicles drive on M different paths

transversely intersecting at K intersections. Vehicles on the

same path have identical dynamics.

In this scenario, we formally keep the definition of IτC that

we used in Section VI, simply adapting the notation. We take

Iτi (t) := Ph([xi(t, ui,min), xi(t, ūi)]),

where ūi is constructed as follows. Call n the last vehicle that

a cluster C has on a path Ph, let [ah,k, bh,k] be the interval

{x : Ph(x) ∈ Ik} (i.e., the extent of the intersection Ik along
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Ph), and let k1 be the first intersection after vehicle n, i.e., let

k1 be such that bh,k1
:= mink(bh,k > xn).

Let m be the number of vehicles of C in Ph such that

x(0) +Dstop +∆stop > ah,k1
. Then:

(i) if m = 0, define ūi as in (8);

(ii) if m > 0 then:

– for all vehicles i such that xi(0)+Dstop +∆stop ≤
ah,k1

define ūi as in (8),

– for all other vehicles call ah := ah,k1
; bh := bh,k1

and define ūi as in (10).

We assume the following condition, which sets an upper

bound to the number of vehicles that can occupy a stretch of

road linking two intersections.

Definition 10 (Sparse traffic condition). Take any two intersec-

tions I1, I2 along a path Ph, with (ah,1, bh,1) < (ah,2, bh,2).
Assume L := ah,2 − bh,1 > 2Dstop + ∆stop. Traffic is

sparse with respect to a time-step τ if there are at most

(L − 2Dstop − ∆stop)/(d + ∆stop) + 1 vehicles lying in the

left-open interval (ah,1 −Dstop −∆stop, ah,2].

A simulation of sparse traffic in a scenario similar to Fig. 5,

run using the algorithm discussed in this paper, is available at

https://vimeo.com/119876036. Under the above condition we

can prove that the partitioning algorithm separates in different

clusters traffic in the neighbourhood of different intersections.

This allows to perform the verification of each cluster by the

same means as in the previous section, as each intersection is

an isolated problem. To formalise and prove this statement we

use properties Pa-Pd introduced in Definition 9. In a nutshell,

a cluster having properties Pa∧Pb∧Pd can be handled as in

Scenario 1, while a cluster having Pc∧Pd can be handled as

in Scenario 2. The main result of this section is to prove that

all elements of a partition returned by Algorithm 1 have either

Pa∧Pb∧Pd or Pc ∧Pd. This is done in Lemma 10. Using

this result, Theorem 11 states the correctness of IτC for this

scenario, by simply building on the results we already proved

for Scenarios 1 and 2.

Lemma 10. If traffic is sparse, for all clusters computed by

Algorithm 1 the statement Pd ∧
(

(Pa ∧ Pb) ∨ Pc
)

is true.

In the above lemma, ∨ is the logical or. The full proof of

the above lemma is rather involved, and is reported in the

appendix.

Theorem 11. If traffic is sparse and clusters are computed

using Algorithm 1, then IC defined above satisfies the property

in Definition 5 for Scenario 3.

Proof: The proof follows trivially from Lemma 10 and

Theorem 8.

A. Simulation of Scenario 3

Here we test our result on the road scenario of Fig. 5,

using the same longitudinal dynamics model and parameters

as in the preceding scenarios. Vehicles travel along three paths

intersecting at two points. Their trajectories are portrayed in

Fig. 6. Initial conditions were chosen so as to ensure that

the sparsity condition is satisfied. As expected, vehicles in

P1

P2

P3

I1 I2

Fig. 5. Two intersections of three paths, the conflict regions around each
intersection are shaded red.

a neighbourhood of each intersection tend to be clustered

together, but a single cluster never spans both intersections

(as a consequence of properties Pb and Pc).

Note that, despite having 16 vehicles in the simulation,

never more than 6 vehicles belong to the same cluster. This

is a consequence of our choice of guaranteed hull favouring

spatially localized clusters. Clusters of this size can be handled

in real time by existing exact verification algorithms (in our

example the cluster supervisor ran in less than 0.15s on a

2GHz Intel Xeon E5-2650 with 2 GB of RAM). For larger

clusters, approximate polynomial-time algorithms would be

necessary (see e.g. [8]). Note that the size of the simulated

t [s]

x [m]

0 2 4 6 8 10 12 14 16 18 20

50

100

150

200

250

Fig. 6. Vehicles in the road network of Fig. 5. Solid, dashed, and dotted
trajectories are of vehicles on path 1 (vehicles 1 . . . 10), 2 (vehicles 11, 12,
and 13), and 3 (vehicles 14, 15, and 16), respectively. Initial conditions
are x(0) = ((180, 10), (160, 10), (140, 10), (120, 10), (100, 10), (80, 10),
(60, 10), (40, 10), (20, 10), (0, 10), (55, 10), (35, 10), (15, 10), (175, 10),
(155, 10), (135, 10)). Supervisor override, clusters, and intersection intervals
are coloured as in Figs. 3 and 4.

9

https://vimeo.com/119876036


road network was limited by the need to graphically represent

the result, but a large network could be treated by the same

means.

VIII. CONCLUSIONS

We have proved that, under fairly mild assumptions, a

large vehicle network can be partitioned through a distributed

algorithm in a set of vehicle clusters, so that safety of the

manoeuvres of cars in one cluster can be verified indepen-

dently of the other clusters. We have used the above result

to define a distributed and least restrictive supervisor for the

vehicle network. Note, however, that independence of the

partition (as defined in Section II) implies that, if any of the

approximate verification algorithm proposed in the literature

(e.g. [8], [33], [38]) is used to verify a cluster, its error

bound guarantees are preserved at the network level. This is

a straightforward consequence of partition independence. This

means that existing approximate verification algorithms can be

used, with no modification, to scale the presented approach to

cases where clusters are too large for exact verification.

The key idea in this construction is the independent par-

tition, which guarantees that no approximation is introduced

when the supervisor of the road network is decomposed in

a set of independent cluster supervisors. The partitioning

algorithm is designed so that, once a partition is computed,

supervisory control requires no more communication between

vehicles of different clusters. Exchanging information between

clusters provides no further improvement in terms of safety or

restrictiveness. This may of course not be the case if different

performance metrics were considered.

In Sections V-VII we have provided an example application

in three different scenarios, using the exact verification algo-

rithms discussed in [8] to implement the cluster supervisors.

The choice of the example scenarios was dictated by the

path configurations for which exact and reasonably efficient

verification algorithms are currently known. However, work

is in progress to extend verification methods to handle much

more complex scenarios (see e.g. [38]), including multiple

nearby intersections, merging and splitting paths. To handle

such scenarios the definitions of guaranteed hull in Sections

V-VII will have to be modified, though we believe that the

general structure outlined in this paper should be flexible

enough to apply to most reasonable road network scenarios.

Two critical aspects of our result are that all network-wide

computation must be completed within a given time τ , and

that, in Scenario 3, sparsity is required to hold throughout the

evolution of the system. Regarding the time constraint, further

work will need to assess the size of the largest network that

can be practically handled within a reasonable τ , taking into

account all technological constraints. Also, if the algorithm

is run on a closed system, a way is needed to register new

vehicles as they join the system without causing the supervisor

to block. Similar issues were addressed in [23], [25], [27].

Regarding sparsity, our approach could be improved by having

the supervisor enforce it, at the cost of prohibiting some safe

manoeuvres. Note that sparsity is only needed to insure that

Scenario 3 decomposes in clusters fitting Scenarios 1 and 2.

In this case, verification and computation of an override (lines

4 and 7 of Algorithm 2) can be done with methods presented

in [8]. In the lack of sparsity, the main results of this paper,

in Sections III and IV, still hold, but other methods must be

developed for verification and override computation.

APPENDIX

The three following lemmas are used in the proofs of

Theorems 5 and 8.

Lemma 12 (Continuity). Let

ui :=
⌊

ui,[0,t1], ui,(t1,t2], . . .
⌋

(ui is a piecewise smooth signal, discontinuous at times

t1, t2, . . .). The trajectory xi(t, ui) depends continuously on

the switching instants t1, t2, . . .

The above property, proved in [8], is used to construct

continuous families of trajectories parametrized in the times

of switching of the corresponding inputs.

Lemma 13. Consider vehicles i and j with identical dy-

namics, and an input signal ui. Let limt→∞ xi(t, ui) ≤
limt→∞ xj(t, umin) < ∞. Then xj(t, umin) ≥ xi(t, ui) for

all t ≥ 0.

Proof: The proof is by contradiction. Assume that the

condition xj(t, umin) ≥ xi(t, ui) is violated for some t ≥ 0.

This would imply that ẋi > ẋj at the time when xj − d
and xi intersect. By the monotonicity property (6), we would

have limt→∞ xj(t, umin) < limt→∞ xi(t, ui), contradicting

our hypothesis.

Note that the above lemma also applies in the case i = j.

Lemma 14. Consider vehicle 2 and its predecessor 1 on the

same path. Assume Us(x) 6= ∅. If there exists (u1, u2) ∈ Us(x)
such that limt→∞ x2(u2) = α for some α ∈ R, then there ex-

ists (u′
1, u2) ∈ Us(x) (with the component u2 unchanged) such

that limt→∞ x1(t, u
′
1) ≤ max{α+ d, limt→∞ x1(t, umin)}.

Proof: Consider the family of inputs in the parameter θ

uθ
1 :=

⌊

umin,[0,θ], umax,[θ,∞)

⌋

.

Assume at first that (u∞
1 , u2) ∈ Us(x). This implies that

limt→∞ x1(t, u
∞
1 ) ≥ α+ d, since otherwise x(t) would enter

B− for sufficiently large t. We thus have limt→∞ x1(t, u
∞
1 ) =

limt→∞ x1(t, umin) ≥ α+d, and the lemma statement is true.

Consider now the case where (u∞
1 , u2) /∈ Us(x). This

means

∃ t : x1(t, u
∞
1 ) = x1(t, umin) < x2(t, u2) + d.

Thus, by the continuity property in Lemma 12, there exists a

θu < ∞ such that

∃ t : x1(t, u
θu
1 ) < x2(t, u2) + d,

while by (A.5) limt→∞ x1(u
θu
1 ) = ∞ and therefore

∃ tu ≥ 0 : x1(t, u
θu
1 ) ≥ x2(t, u2) + d, ∀ t ≥ tu

(recall that limt→∞ x2(t, u2) = α < ∞). This means that

x1(t, u
θu
1 ) lies above x2(t, u2) + d at all t except for a

10



closed interval contained in (0, tu). Then, by (A.1) and (5),

x1(t, u
0
1) ≥ x1(t, u1) for all t ≥ 0 and for all u1. Given that

Us(x) 6= ∅, this implies

x1(t, u
0
1) ≥ x2(t, u2) + d, ∀ t ≥ 0.

Now consider the function θ 7→ R

min
t∈(0,tu)

(x1(t, u
θ
1)− d− x2(t, u2)).

We have shown above that it is non-negative for θ = 0, and

negative for θ = θu, so by Lemma 12 and the intermediate

value theorem it must have a zero for some θtng ∈ [0, θu).

Such a θtng corresponds to a trajectory x1(t, u
θtng
1 ) which is

tangent to x2(t, u2) + d at some time ttng ∈ (0, tu). Let

u′
1 :=

⌊

u
θtng
1,[0,ttng]

, u2,(ttng,∞)

⌋

.

Given that

• vehicles 1 and 2 have identical dynamics,

• x1(ttng, u
′
1) = x2(ttng, u2) + d,

• ẋ1(ttng, u
′
1) = ẋ2(ttng, u2),

• and the vehicles use the same inputs for t > ttng,

x1(t, u
′
1) = x2(t, u2) + d for all t ≥ ttng, so that

limt→∞ x1(u
′
1) = α+ d. This completes the proof.

Proof of Theorem 5: We must show that if Us(xC) 6= ∅
then for any u[0,τ ] ∈ Us(xC) it is possible to construct a

u(τ,∞) ∈ Us(xC(τ,u[0,τ ])) such that

yC(t,u) ∈ IτC(t), ∀ t ≥ 0.

We first construct u(τ,∞) so that, for any u[0,τ ] ∈ Us(xC),
xC(t,uC) is lower-bounded by xC(t, umin) and upper-

bounded by xC(t, ūC). Then we will prove that u(τ,∞) ∈
Us(xC(τ,u[0,τ ])).

The theorem only refers to vehicles of a given cluster C;

therefore, to keep notation simple, we will assume throughout

the proof that all vehicles of the system belong to C, and will

avoid the use of subscript C to restrict vectors to the cluster.

Take n as the last vehicle of C, i.e., the only vehicle that

is not a predecessor of another vehicle in C. We must show

that, for any un,[0,τ ] ∈ Us(x), there exists a un,(τ,∞) such that

xn(t, umin) ≤ xn(t, un) ≤ xn(t, ūn), ∀ t ≥ 0.

The first inequality follows from (5) no matter how we

construct un,(τ,∞). To prove the second inequality, define

un,(τ,∞) := umin. In (8) we have τ = t∗n and ūn,[0,t∗n]
=

umax, therefore the second inequality is true in the time

interval [0, τ ]. Moreover, (5) and (8) ensure that xn(τ, un) ≤
xn(τ, ūn), and ẋn(τ, un) ≤ ẋn(τ, ūn), and we have con-

structed un,(τ,∞) so that un(t) = ūn(t), ∀ t > τ . Therefore

by (5) the inequality is true for all t ≥ 0.

Consider now vehicle n − 1, the predecessor of n. We

have by assumption that u[0,τ ] ∈ Us(x), and therefore

that Us(x(τ,u)) 6= ∅. We can use Lemma 14 to construct

un−1,(τ,∞) such that

lim
t→∞

xn−1(t, un−1) ≤ max
{

lim
t→∞

xn(t, un) + d,

lim
t→∞

xn−1

(

t,
⌊

un−1,[0,τ ], umin,(τ,∞)

⌋

)

}

. (11)

We now show that for any un−1,[0,τ ] this un−1,(τ,∞) satisfies

xn−1(t, umin) ≤ xn−1(t, un−1) ≤ xn−1(t, ūn−1), ∀ t ≥ 0.

As before, the first inequality follows from (5). The second

inequality is true in the time interval [0, t∗] by (5), given

definition (8). Now, notice that the definition of t∗ in (8)

implies that

lim
t→∞

xn−1(t, ūn−1) = max
{

lim
t→∞

xn(t, ūn) + d,

lim
t→∞

xn−1

(

t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

)

}

,

and that we have

lim
t→∞

xn(t, ūn) + d ≥ lim
t→∞

xn(t, un) + d

(we proved it before), and

lim
t→∞

xn−1

(

t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

)

≥

lim
t→∞

xn−1

(

t,
⌊

un−1,[0,τ ], umin,(τ,∞)

⌋

)

(by (5)). Using (11) and the two above inequalities, we obtain

lim
t→∞

xn−1(t, ūn−1) ≥ lim
t→∞

xn−1(t, un−1).

By Lemma 13, and since ūn−1,(t∗,∞) = umin, this implies

xn−1(t, ūn−1) ≥ xn−1(t, un−1), ∀ t ≥ t∗,

and therefore xn−1(t, ūn−1) ≥ xn−1(t, un−1), ∀ t ≥ 0. By

sequentially performing the same reasoning for vehicles n −
2, . . . , 1, we can construct u such that y(t,u) ∈ Iτ (t), ∀ t ≥
0. Moreover, the use of Lemma 14 ensures the constructed

u(τ,∞) ∈ Us(x(τ,u[0,τ ])). This concludes the proof.

Proof of Theorem 8: The theorem only refers to vehicles

of a given cluster C; therefore, to keep notation simple, we

will assume throughout the proof that all vehicles of the system

belong to C, and will avoid the use of subscript C to restrict

vectors to the cluster.

First, we will show that, given any u[0,τ ] ∈ Us(x), the input

u can be completed over the interval (τ,∞) so that, for any

vehicle i,

xi(t, umin) ≤ xi(t, ui) ≤ xi(t, ūi), ∀ t ≥ 0. (12)

Let us start by considering all the vehicles for which ūi is

defined as in (8): on all paths that fall into case (i), construct

the input as in the proof of Theorem 5. Similarly, on paths

which fall into case (ii), for all vehicles such that xi(0) +
Dstop+∆stop ≤ ah, i.e., for all vehicles which can surely stop

before reaching the beginning of the intersection, construct

the input as in the proof of Theorem 5. We already proved

that such an input satisfies (12), this takes care of rear-end

collisions. Moreover, by Lemma 6, for all considered vehicles

lim
t→∞

xi(t, ūi) ≤ ah;

this excludes side-collisions.

Let us now consider the only remaining vehicles, i.e., those

for which

xi(0) +Dstop +∆stop > ah. (13)
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The structure of the proof is similar to the one used in

Theorem 5. Assume that vehicles are numbered in topological

order. We construct an input for the last vehicle on each path

which satisfies (13)—call it vehicle m—so that the vehicle’s

position remains within Iτm; then we construct an input for its

predecessor m − 1 so that its position remains within Iτm−1

and so that it does not collide with m; then we repeat the

reasoning to construct safe inputs for all remaining vehicles.

The difference from Theorem 5 is that now these inputs

must be constructed so as to avoid also lateral collisions with

vehicles from other paths.

First, in order to avoid lateral collisions, let us construct

inputs so as to drive each vehicle safely to the end of the

intersection. Since Us(x) 6= ∅, there exists ũ ∈ Us(x)
that brings the vehicles beyond bh avoiding rear and lateral

collisions. For each vehicle, let t̃i be the earliest non-negative

time when xi(t̃i, ũi) ≥ bh, that is

t̃i := argmin
t≥0

{t : xi(t̃i, ũi) ≥ bh}, (14)

and call

t̄i := max{τ, t̃i}. (15)

Let each vehicle i use input ũi up to time t̄i. With this input

vehicles reach the end of the intersection without collisions;

we are only left to show that we can construct ui,(t̄i,∞) so as

to satisfy (12).

Define

um,(t̄m,∞) := umin. (16)

If m has a successor m+1, we have constructed um+1 so that

limt→∞ xm+1(t, um+1) ≤ ah; we have constructed um,(0,t̄m)

to avoid collisions before m reaches bh; and we have assumed

bh − ah ≥ d. Therefore, m and m+ 1 cannot collide.

We now show that input (16) satisfies (12). The first inequal-

ity in (12) follows directly from (5). The second inequality is

true in the time interval [0, t∗] by (5), given (10). We prove

the inequality over the interval (t∗,∞) considering separately

the cases τ > t̃m and τ ≤ t̃m.

(τ > t̃m):

In this case t̄m = τ . We therefore have

um :=
⌊

ũm,[0,τ ], umin,(τ,∞)

⌋

,

while

ūm :=
⌊

umax,[0,t∗], umin,(t∗,∞)

⌋

,

and, by (10), t∗ ≥ τ . Using (5) we conclude that

xm(t, ūm) ≥ xm(t, um), ∀ t ≥ t∗.

(τ ≤ t̃m):

We have

lim
t→∞

xm(t, um) =

xm(t̃, um) +
(

lim
t→∞

xm(t, um)− xm(t̃, um)
)

.

Using (16), Definition 7, and the fact that the vector field (1)

is invariant to translation in the position x, (5) ensures that

lim
t→∞

xm(t, um)− xm(t̃m, um) ≤ Dstop.

By the definition of t̃m, xm(t̃m, um) = bh, thus obtaining

lim
t→∞

xm(t, um) ≤ bh +Dstop. (17)

This, together with (10), gives that

lim
t→∞

xm(t, um) ≤ lim
t→∞

xm(t, ūm).

The above inequality and ūm,(t∗,∞) = umin allow to use

Lemma 13 to conclude that

xm(t, ūm) ≥ xm(t, um), ∀ t ≥ t∗.

Therefore, for both τ > t̃m and τ ≤ t̃m,

xm(t, ūm) ≥ xm(t, um), ∀ t ≥ 0.

Consider now vehicle m−1, the predecessor of m. We have

by assumption that Us([xm−1(t̄m−1), xm(t̄m−1)]) 6= ∅ (since

xm(0) < xm−1(0) implies t̄m ≥ t̄m−1), therefore we can use

Lemma 14 to construct um−1,(t̄m−1,∞) such that

lim
t→∞

xm−1(t, um−1) ≤ max
{

lim
t→∞

xm(t, um) + d,

lim
t→∞

xm−1

(

t,
⌊

um−1,[0,t̄m−1], umin,(t̄m−1,∞)

⌋

)

}

. (18)

We now show that for any um−1,[0,t̄m−1] this um−1,(t̄m−1,∞)

satisfies

xm−1(t, umin) ≤ xm−1(t, um−1) ≤ xm−1(t, ūm−1).

As before the first inequality follows from (5). The second

inequality is true in the time interval [0, t∗] by (5), given (10).

To prove the inequality over the interval (t∗,∞) we consider

separately the two cases t̃m−1 ≤ τ and t̃m−1 > τ .

(τ > t̃m−1):

The argument is identical to the one used for vehicle m in the

case (τ > t̃m).

(τ ≤ t̃m−1):

Using (16), Definition 7, and the fact that the vector field (1)

is invariant to translation in the position x, (5) ensures that

lim
t→∞

xm−1

(

t, um−1

)

:=

lim
t→∞

xm−1

(

t,
⌊

um−1,[0,t̃m−1], umin,(t̃m−1,∞)

⌋

)

≤ bh+Dstop.

Moreover, since we have t̃m−1 ≤ t̃m, we are in the case where

τ ≤ t̃m, and we have shown in (17) that

lim
t→∞

xm(t, um) ≤ bh +Dstop.

Using the two above inequalities in (18), we obtain

lim
t→∞

xm−1(t, um−1) ≤ bh +Dstop + d,

while (10) ensures that

lim
t→∞

xm−1(t, ūm−1) ≥ bh +Dstop + d

and therefore that

lim
t→∞

xm−1(t, um−1) ≤ lim
t→∞

xm−1(t, ūm−1).

Having ūm−1,(t∗,∞) = umin, the above inequality allows to
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use Lemma 13 to conclude that

xm−1(t, ūm−1) ≥ xm−1(t, um−1), ∀ t ≥ t∗.

Therefore, for both τ > t̃m−1 and τ ≤ t̃m−1,

xm−1(t, ūm−1) ≥ xm−1(t, um−1), ∀ t ≥ 0.

By performing the same reasoning sequentially on all vehi-

cles we complete any u[0,τ ] ∈ Us(x) with an input u(τ,∞) so

that u satisfies (12). Moreover, u ∈ Us(x(0)) by construction.

As a consequence, IτC satisfies the property in Definition 5 for

Scenario 2.

Proof of Lemma 9: Let j be the first vehicle such that

x(0) < bh. By the definition of IτC and (10), we have

lim
t→∞

xj(t, ūj) ≤ max
{

bh +Dstop + (n− j)d,

lim
t→∞

xj(t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

)
}

; (19)

by Definition 7 we have

lim
t→∞

xj(t, umin) ≤ xj(0) +Dstop; (20)

and by Remark 3, we have

lim
t→∞

xj(t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

) ≤

xj(0) +Dstop +∆stop. (21)

Moreover, we have

xj(0) ≤ bh. (22)

Using (20) and (22), we obtain limt→∞ xj(t, umin) ≤ bh +
Dstop, while using (19), (21), and (22) we find

lim
t→∞

xj(t, ūj) ≤ bh+Dstop+∆stop+(n−j)(d+∆stop).

(23)

Now consider vehicle j−1, the predecessor of j. If Algorithm

1 merged j and j − 1 in the same cluster,

lim
t→∞

xj−1(t, umin) ≤ lim
t→∞

xj(t, ūj) + d, (24)

that is,

lim
t→∞

xj−1(t, umin) ≤ bh +Dstop + (n− j + 1)(d+∆stop).

Furthermore, by (10),

lim
t→∞

xj−1(t, ūj−1) ≤ max
{

bh +Dstop + (n− j + 1)d,

lim
t→∞

xj−1(t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋

)
}

and, by Definition 8,

lim
t→∞

xj−1

(

t,
⌊

umax,[0,τ ], umin,(τ,∞)

⌋)

≤

lim
t→∞

xj−1(t, umin) + ∆stop

thus obtaining

lim
t→∞

xj−1(t, ūj−1) ≤

max
{

bh+Dstop+(n−j+1)d, lim
t→∞

xj−1(t, umin)+∆stop

}

.

Using (23) and (24) in the above we obtain

lim
t→∞

xj−1(t, ūj−1) ≤

bh +Dstop +∆stop + (n− j + 1)(d+∆stop).

Iterating the above reasoning for vehicles j − 2, . . . , 1, we

obtain

lim
t→∞

x1(t, umin) ≤ bh +Dstop + (n− 1)(d+∆stop),

and

lim
t→∞

x1(t, ū1) ≤ bh +Dstop +∆stop + (n− 1)(d+∆stop),

as we sought to prove.

The following lemma is used in the proof of Lemma 10.

Lemma 15. Consider a cluster C with properties Pb or Pc.
Name 1, . . . , n, in topological order, the vehicles of C in a

path Ph, and assume that x1(0) +Dstop +∆stop < ah,k, for

some intersection Ik. If C was formed using Algorithm 1 and

the sparsity condition holds, then

lim
t→∞

x1(t, ū) ≤ ah,k.

Proof: Let us first consider the case where C has Pb. By

Lemma 6, limt→∞ x1(t, ū1) ≤ x1(0) + Dstop + ∆stop. We

have assumed x1(0) +Dstop +∆stop < ah,k, therefore

lim
t→∞

x1(t, ū1) ≤ ah,k.

Consider now the case where C has Pc, and let I1 be the

only intersection such that [xn(0), x1(0)+Dstop + ∆stop] ∩
[ah,1, bh,1] 6= ∅. By Lemma 9 we have

lim
t→∞

x1(t, ū1) ≤ bh,1 +Dstop +∆stop + (m− 1)(d+∆stop),

where m is the number of vehicles on Ph such that x(0) +
Dstop +∆stop ≥ ah,1. The sparsity condition ensures ah,k −
Dstop ≥ bh,1+Dstop+∆stop+(m−1)(d+∆stop). Using the

two above inequalities we obtain limt→∞ x1(t, ū1) ≤ ah,k.
Proof of Lemma 10: The proof is by induction. First,

notice that at the beginning of Algorithm1 all clusters have

the property Pd ∧ Pa ∧ Pb or the property Pd ∧ Pc. This is

because, at the first iteration, all clusters consist of a single

vehicle. This is the induction basis.

The rest of the proof consists in showing that, no matter

how vehicles are grouped to form larger clusters, the resulting

clusters have the property Pd, and either Pa ∧ Pb or Pc. We

consider cases based on the properties of the merged clusters,

and on the reason why they are merged. Note that Algorithm 1

may merge more than two clusters at a time. For simplicity we

consider only merging of pairs of clusters, the proof obviously

extending to merging of larger sets.

Two clusters C1 and C2 can be merged through Line 6 of

Algorithm 1 if

∃t, i ∈ C1, j ∈ C2 : (Iτi (t), I
τ
j (t)) ∩B+,(i,j) 6= ∅ (25)

i.e., because they interfere through B+, or if

∃t, i ∈ C1, j ∈ C2 : (Iτi (t), I
τ
j (t)) ∩B−,(i,j) 6= ∅ (26)

i.e., because they interfere through B−. If C1 and C2 are
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merged because of (25), then necessarily both C1 and C2 have

Pc. We thus define the following cases

(c1) C1 and C2 have Pc∧Pd and are merged because of (25)

(c2) C1 and C2 have Pc∧Pd and are merged because of (26)

(c3) C1 has Pc∧Pd and C2 has Pa∧Pb∧Pd, and they are

merged because of (26)

(c4) C1 and C2 have Pa ∧ Pb ∧ Pd and are merged because

of (26)

Note that (25) does not exclude (26), therefore cases (c1)

and (c2) are not mutually exclusive; this does not affect the

proof. In the rest of the proof, we use the following symbols:

• Given a set n, . . . , 1 of vehicles of a cluster Ci on any

given path, we call ℑi, the interval

ℑi := [xn(0), x1(0) +Dstop +∆stop].

• Given a cluster C1∪C2 obtained by merging C1 and C2,

we call ℑ1∪2 the corresponding set ℑ.

The quantities defined above have the properties specified

in the following remarks.

Remark 4. If a cluster Ci has Pa ∧Pb, with all vehicles on

P , then
⋃

j∈Ci,t≥0

Iτj (t) ⊆ P(ℑi).

Remark 5. Take two clusters C1 and C2 with vehicles on

a common path P . Let all vehicles of C2 on P precede all

vehicles of C1 on the same path. If C1 has Pa ∧ Pb then

Algorithm 1 can merge the two clusters only if ℑ1 ∩ ℑ2 6= ∅.

The latter remark is a consequence of Lemma 6. We can

now proceed with the proof for each one of cases (c1)-(c4).

(c1): Since both C1 and C2 have Pc, there exists an

intersection I1 such that, on each path Ph where C1 or C2

have vehicles,

ℑ1 ∩ [ah,1, bh,1] 6= ∅, ℑ1 ∩ [ah,k, bh,k] = ∅, ∀ k 6= 1, (27)

and

ℑ2 ∩ [ah,1, bh,1] 6= ∅, ℑ2 ∩ [ah,k, bh,k] = ∅, ∀ k 6= 1. (28)

Note that the intersection I1 is necessarily the same for

clusters C1 and C2, because of (25) (they interfere through

B+). The interval ℑ1∪2 has for left bound the minimum of the

left bounds of ℑ1 and ℑ2, and for right bound the maximum

of the right bounds of ℑ1 and ℑ2. Therefore, (27) and (28)

imply that ℑ1∪2 ⊆ ℑ1 ∪ ℑ2 ∪ [ah,1, bh,1]. This means that

ℑ1∪2 ∩ [ah,1, bh,1] 6= ∅, ℑ1∪2 ∩ [ah,k, bh,k] = ∅, ∀ k 6= 1.

This is true on all paths, therefore C1 ∪ C2 has Pc.

We now prove by contradiction that C1 ∪ C2 has Pd. Let

1, . . . , n and n + 1, . . . , n + m be the vehicles of C1 and

C2 respectively, numbered in topological order. Since C1 and

C2 have Pd we can assume, without loss of generality, that

x1(0), . . . , xn(0) > xn+1(0), . . . , xn+m(0) (i.e., we assume

that on Ph vehicles of C1 precede vehicles of C2). If C1∪C2

doesn’t have Pd, there must exist a vehicle i on a Ph such

that xn(0) > xi(0) > xn+1(0). Equation (27) implies that

xn(0) ≤ bh,1, while (28) implies that xn+1(0) + Dstop +
∆stop ≥ ah,1. Thus we can write xi(0) ∈ [ah,1 − Dstop −

∆stop, bh,1], and this in turn implies that

lim
t→∞

xi(t, umin) ≤ bh,1 +Dstop +∆stop,

while by (10)

lim
t→∞

xn(t, ūn) ≥ bh,1 +Dstop +∆stop.

Thus, Line 6 of Algorithm 1 must have merged vehicle i and

cluster C1.

(c2): On any path Ph, property Pc for both C1 and C2

can be written as

ℑ1 ∩ [ah,1, bh,1] 6= ∅, ℑ1 ∩ [ah,k, bh,k] = ∅, ∀ k 6= 1, (29)

and

ℑ2 ∩ [ah,k1
, bh,k1

] 6= ∅, ℑ2 ∩ [ah,k, bh,k] = ∅, ∀ k 6= k1.
(30)

Let 1, . . . , n and n+1, . . . , n+m be the vehicles of C1 and C2

respectively, numbered in topological order. Having Pd we can

assume, without loss of generality, that x1(0), . . . , xn(0) >
xn+1(0), . . . , xn+m(0).

As a first step, we will show that Ik1
in (30) must nec-

essarily be equal to I1 in (29) (i.e., it must be the same

intersection as for cluster C2). We prove this by contradiction

using the sparsity condition. Assume that k1 6= 1, for instance

k1 = 0. Let ñ2 be the number of vehicles of C2 such that

x(0) > ah,0 −Dstop −∆stop. By Lemma 9 we have

lim
t→∞

xn+1(t, ū1) ≤

bh,0 +Dstop +∆stop + (ñ2 − 1)(d+∆stop). (31)

If C1 and C2 interfere through B− then ∃ t ≥ 0 :
xn(t, umin)− d ≤ xn+1(t, ūn+1). By Lemma 13 this implies

that limt→∞ xn(t, umin)−d ≤ limt→∞ xn+1(t, ūn+1). Using

(31) this gives

lim
t→∞

xn(t, umin) ≤ bh,0 + Dstop + ñ2(d + ∆stop). (32)

Let ñ1 be the number of vehicles of C1 such that x(0) ≤
ah,1 −Dstop −∆stop, so that xn−ñ1

is the last vehicle of C1

such that

x(0) > ah,1 −Dstop −∆stop. (33)

There must be at least on vehicle satisfying (33), since C1

has Pc. For vehicles n, . . . n− ñ1 + 1, ū is defined as in (8),

therefore proceeding as in the proof of Lemma 6 we can show

that

lim
t→∞

xn−ñ1+1(t, ūn−ñ1+1) ≤

xn−ñ1+1(0) +Dstop +∆stop ≤ ah,1.

Line 6 of Algorithm 1 requires xn−ñ1
(0) ≤

limt→∞ xn−ñ1+1(t, ūn−ñ1+1) to merge the two vehicles

in the same cluster, therefore xn−ñ1
(0) ≤ ah,1. As a

consequence, there are at least

N := ñ1 + ñ2 + 1 (34)

vehicles in the interval (ah,0−Dstop −∆stop, ah,1]. This will

be used, with the sparsity condition, to prove the contradiction.
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We now reason inductively, starting from (32), to compute

an upper bound to xn−ñ1
(t, umin). Vehicle n is the last one

in C1, therefore t∗n in (8) is equal to τ , and

lim
t→∞

xn(t, ūn) ≤ lim
t→∞

xn(t, umin) + ∆stop ≤

bh,0 +Dstop +∆stop + ñ2(d+∆stop). (35)

Furthermore, if i and i − 1 belong to the same cluster, it

must be that

lim
t→∞

xi−1(t, umin) ≤ lim
t→∞

xi(t, ūi) + d, (36)

in particular, if i = n− 1

lim
t→∞

xn−1(t, umin) ≤ lim
t→∞

xn(t, ūn) + d.

The above inequality with (35) gives

lim
t→∞

xn−1(t, umin) ≤ bh,0+Dstop+(ñ2+1)(d+∆stop).

(37)

Now for any i ∈ {n − 1, . . . , n − ñ1 + 1} we have xi(0) <
ah,1 + Dstop + ∆stop, therefore ūi is defined as in (8). We

have

lim
t→∞

xi(t, ūi) ≤

max
{

lim
t→∞

xi(t, umin) + ∆stop, lim
t→∞

xi+1(t, ūi+1) + d
}

,

(38)

where the first element in the max corresponds to the case

t∗i = τ in (8) , while the second element corresponds to the

case t∗i > τ . For i = n−1, using (35) and (37), (38) becomes

lim
t→∞

xn−1(t, ūn−1) ≤

max
{

lim
t→∞

xn−1(t, umin) + ∆stop, lim
t→∞

xn(t, ūn) + d
}

≤

max
{

bh,0 +Dstop +∆stop + (ñ2 + 1)(d+∆stop),

bh,0 +Dstop + (ñ2 + 1)(d+∆stop)
}

=

bh,0 +Dstop +∆stop + (ñ2 + 1)(d+∆stop). (39)

Repeating the above reasoning for vehicles n− 2, . . . , n− ñ1

we obtain

lim
t→∞

xn−ñ1
(t, umin) ≤ bh,0+Dstop+(ñ1+ñ2)(d+∆stop).

However, we have by assumption (recall (33)) that

lim
t→∞

xn−ñ1
(t, umin) ≥ xn−ñ1

(0) > ah,1 −Dstop −∆stop,

and therefore that

ah,1 −Dstop −∆stop < bh,0 +Dstop +(ñ1 + ñ2)(d+∆stop).

Using (34) we can rewrite the inequality above as

ah,1 − bh,0 ≤ 2Dstop + ∆stop + (N − 1)(d + ∆stop).

This contradicts the sparsity condition in Definition 10, which

ensures that

ah,1 − bh,0 > 2Dstop +∆stop + (N − 1)(d+∆stop).

The above reasoning shows that, assuming the sparsity con-

dition, intersection k1 in (30) must be the same as intersection

1 in (29). We can thus prove that C1 ∪ C2 has Pc and Pd
following the same reasoning as in case (c1).

(c3): C1 has Pc and C2 has Pa ∧ Pb, therefore on each

path Ph

ℑ1 ∩ [ah,1, bh,1] 6= ∅, ℑ1 ∩ [ah,k, bh,k] = ∅, ∀ k 6= 1,

while all vehicles of C2 are on a single path P1 (by Pa) and

ℑ2 ∩ [a1,k, b1,k] = ∅, ∀ k

(by Pb). Since Pd holds for both clusters, either all vehicles

in C1 precede all vehicles in C2, or vice-versa.

Consider first the case xi(0) > xj(0), for all i ∈ C1 and

j ∈ C2. By Remark 5, if C1 and C2 are merged by Algorithm

1 ℑ1 ∩ ℑ2 6= ∅; as a consequence,

ℑ1∪2 ⊆ ℑ1 ∪ ℑ2.

Thus, C1 ∪C2 has Pc.
Consider now the case xi(0) < xj(0), for all i ∈ C1 and

j ∈ C2. A necessary condition to merge the two clusters (recall

Remark 4 and the fact that C2 has Pa∧Pb) through Line 6 of

Algorithm 1 is that {∪i∈C1,t≥0 Iτi (t)}∩P1(ℑ2) 6= ∅, therefore

P1(ℑ1∪2) ⊆ Iτ1 ∪ P1(ℑ2).

Furthermore, we have by Lemma 15 that

{∪i∈C1,t≥0 Iτi (t)} ∩ Ik = ∅, ∀ k 6= 1.

Therefore, in all cases C1 ∪ C2 has Pc.
We now prove by contradiction that it also has Pd. Assume

xi(0) > xj(0), for all i ∈ C1 and j ∈ C2 (the proof is identical

in the other case). If C1 ∪C2 did not have Pd, given that C1

and C2 have Pd, there would exist a vehicle i on a Ph such

that xn(0) > xi(0) > xn+1(0), where n and n+1 are the last

vehicle of C1 and the first of C2, respectively. The two clusters

are merged by interference through B−, therefore xn(t, ūn)
must intersect xn+1(t, umin). As a consequence xi(t, ui) must

intersect xn(t, ūn) and xn+1(t, umin), for any u. This implies

that i should have been merged to C1 or C2 by Algorithm 1.

(c4): Both C1 and C2 have Pa and Pb. Since both clusters

have property (Pa∧Pb), the vehicles of C2 must necessarily

be on the same path P for C1 and C2 to be merged by

Algorithm1, therefore the resulting cluster has Pa.

Without loss of generality, and since property Pd holds, we

can assume that xi(0) > xj(0), for all i ∈ C1 and j ∈ C2.

By Remark 5 the condition ℑ1 ∩ ℑ2 6= ∅ is necessary to

merge the two clusters: if it were not satisfied, any trajectory in

IτC2
would reach a stop before even reaching the initial position

of the last vehicle in C1. This implies that ℑ1∪2 ⊆ ℑ1 ∪ ℑ2,
therefore C1 ∪C2 has also property Pb. We can finally prove

Pd as in case (c3).
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