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Safety verification methods for human-driven
vehicles at traffic intersections:

optimal driver-adaptive supervisory control
Gabriel Rodrigues de Campos, Fabio Della Rossa, AlessandroColombo

Abstract—We design an optimal, driver-adaptive supervisor for
collision avoidance at an intersection. The algorithm is able to
identify optimal corrections to the human-decided inputs and to
keep the system collision-free. To determine the set of safecontrol
actions, we exploit the notion of maximal controlled invariant set.
We leverage results from scheduling theory to verify the safety
of a given control input, and propose an efficient optimization
algorithm providing optimal solutions with respect to the drivers’
intent. We also present an approximate supervisor algorithm
that can be solved in polynomial time and has guaranteed error
bounds. Finally, we validate our approach with simulation results,
as well as on naturalistic data.

Index Terms—Supervisory control, safety verification algo-
rithms, collision avoidance, traffic coordination, intersection

I. I NTRODUCTION

Modern transportation systems are increasingly relying on
communication technologies and automatic control [1], [2],
and a particular area of interest of recent research on smart
mobility is intersection management. Even if intersections
represent a small part of the entire road system, they account
for a significant part of traffic accidents. According to recent
reports, 20 % and 21.5% of traffic fatalities during the last
decade are intersection related within the EU and the USA,
respectively [3], [4]. Most important, close to 94% of accidents
are completely, or in part, due to human error as a result of
misinterpretation of a situation, inattention or the disregard
of traffic rules [3], [5]. Such alarming numbers justify the
design of increasingly sophisticated semi-autonomous and
autonomous safety systems, aimed to provide more efficient,
comfortable, and almost accident-free road traffic.

In this paper we focus our attention on collision avoidance
algorithms at traffic intersections. We assume that humans
are driving each car, and that a (centralized or decentralized)
supervisor is in charge of ensuring the vehicles’ safety (i.e., a
human-in-the-loop (HITL) system, see Fig. 1). We consider
that the information on the environment and surrounding
vehicles and an estimation on the drivers’ intent are available
and exchanged via a wireless network between the vehicles.
We abstract from the perception and drivers’ intent estima-
tion problems, proposing a generic algorithm that can cope
with any intent estimation algorithm, e.g., [6]–[8]. We aim
at designing a driver-adaptive supervisor (blue element of
Fig. 1). In practice, such a supervisor can be implemented
in two fundamentally different frameworks. In acentralized

This work is supported by the grant “AD14VARI02 - Progetto ERC
BETTER CARS - Sottomisura B”. Gabriel R. Campos, F. Della
Rossa and A. Colombo with the DEIB at Politecnico di Milano,
Italy. Email: gabriel@decampos.eu, {fabio.dellarossa,
alessandro.colombo}@polimi.it

framework, a single supervisor functions as the process man-
ager, and the control inputs are communicated over wireless
links. This setup requires two communication hops: one for
exchanging the state information and a second for the control
policy. In adecentralizedframework instead, we consider that
computation is performed by supervisor units installed in each
vehicle, where each supervisor has access to global vehicles’
information transmitted over omnidirectional communication
links. The reader can refer to [9] for a detailed discussion on
decentralized and distributed sensing and control.

The problem of supervision for collision avoidance is dis-
cussed, among others, in [10]–[18], and is typically set in a
framework of verification for safety specifications. Though
standard general purpose algorithms exist, they are limited
by numerical complexity to handle problems involving just a
few agents (typically two). A set of efficient solutions for the
intersection collision avoidance problem was proposed in [13]
using Scheduling Theory, and extended to more complex
scenarios in [15]–[18]. Note that all the aforementioned papers
focus solely on the safety aspects, and ignore in their design
optimality arguments: no attempt is done to approximate the
drivers’ intent when the drivers’ input is overridden. Hence,
there may be a mismatch between the input returned by the
supervisor and the drivers’ desired input. To cope with this
problem, we propose an optimal, driver-adaptive solution.Our
approach is based on the solution of two separate problems:
(i) the Verification Problem, determining if there exists an
input signal that leads all agents safely through the intersec-
tion; and (ii) the Supervisor Problem, returning a safe and
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Figure 1. Supervisory control structure of human-driven vehicles.
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optimal approximation of the drivers’ intent if the desired
input violates safety conditions. To determine the set of safe
control actions, we exploit the notion of maximal controlled
invariant set (MCIS). Even if our approach is aimed at human-
driven vehicles, it can be coupled with existing algorithms
for autonomous vehicles [19]–[24], in a multi-layer control
structure. In this case, our algorithm would ensure the safety
of the trajectories generated by a higher level decision system.

The contributions of this work are the following. First, we
elaborate on a novel optimal conflict resolution technique first
presented in [25] that is optimal with respect to the human’s
desired actions. Second, we propose an optimal supervisor
coupled with a state predictor robust to input uncertainties,
easily extendable to also handle modelling and measurement
uncertainties. Third, we discuss here approximate solutions
that guarantee real-time implementation of the proposed solu-
tion for set of more than eight vehicles. Finally, we validate our
theoretical framework not only on simulated but also on real
data. Note that, though building on our previous work [25], all
the theoretical machinery (definitions, lemmas, theorems,...) is
novel due to the robust state prediction and the definition ofthe
MCIS given later. The paper is organized as follows. SectionII
describes the dynamic model, and Section III the problem
formulation. The different steps of our approach are presented
subsequently: the state prediction in Section IV; safety ver-
ification in Section V; and control synthesis in Section VI.
The properties of our supervisor algorithm are discussed in
Section VII, simulations and experimental results given in
Section VIII, and our conclusions provided in Section IX.

II. SYSTEM DEFINITION

Consider the system

ẋ = f(x,u), y = h(x), (1)

wherex ∈ X ⊆ Rrn is the state ofn vehicles moving onn
different paths withr-order dynamics,y ∈ Rn is the vector
of the positions of the vehicles along their paths andu is a
vector of control inputs. The system is given by the parallel
composition ofn different systems:

ẋi = fi(xi, ui), yi = hi(xi), (2)

describing the longitudinal dynamics of each vehicle. We
assume that system (1) has unique solutions and that the
individual systems (2) are monotone [26], withR+ (the
nonnegative real line) as the positivity cone ofyi. This yields

(xi(0), ẋi(0)) � (x′
i(0), ẋ

′
i(0)), ui � u′

i

⇓
(xi, ẋi) � (x′

i, ẋ
′
i).

(3)

In words, this means that the more a vehicle accelerates, the
faster it will move. Throughout the paper,xi, yi andui will
be used indifferently to denote vectors (as above) and signals,
the correct interpretation will be clear from the context. The
values of x and y at time t, starting from x0 and with
input signalsu, are denotedx(t,u,x0) andy(t,u,x0). The
functional spaces of the input signalsui(t) andu areUi and
U ⊂ Rn, respectively, and the setUi is compact, with a unique
maximumui,max and minimumui,min. We also assume that
ẏi is bounded to the non-negative interval[0, ẏi,max] for
all i and thatlimt→∞ ẏi(t, ui,max) = ẏi,max. Without loss
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Figure 2. Illustration of the considered scenario. Severalhuman-driven
vehicles approach an intersection following pre-defined paths.

of generality, and for simplifying the notation, we assume
that vehicles have homogeneous input setsUi, such that
ui,min = uj,min = umin andui,max = uj,max = umax, ∀i, j.

In this work, we assume that the path of each vehiclei is
known, and that vehicles do not change paths/lanes when they
engage in the intersection. The intersection can be modeled
as an interval(ai, bi) along each path, see Fig. 2. Note that
the interval(ai, bi) should be defined in such a way that the
size of vehicles and the intersection itself are accounted for.
Let B ⊂ Rn denote the (time-invariant)Bad Set, including
all configurations corresponding to a side-collision,i.e., all yi
and yj such thatyi(t) ∈ (ai, bi) and yj(t) ∈ (aj , bj) at the
same instantt:

B :=
{

y ∈ Rn : yi ∈ (ai, bi) ∧ yj ∈ (aj , bj), for somei 6= j
}

.

The supervisor that we present later on is implemented as a
discrete-time algorithm. To keep notation simple, we consider
in the rest of the paper that0 is the current time when a step
of the supervisor is executed. Finally, we also introduce the
following definition.

Definition 1 (Notation convention). We denote
• um the measurement of brake and acceleration input for

all drivers, taken at time zero.
and from time zero onwards,

• udes(t) the unknown, future desired control signal for all
drivers;

• uhyp(t) a hypothesis on the future behavior of the drivers,
i.e., a hypothesis onudes(t).

• umeas(t) a constant input signal, equal toum.

III. PROBLEM STATEMENT

We assume that humans are driving each car, and that a
supervisor is in charge of verifying the safety of human-
decided control inputs [18], [27]. In the literature, the subset
of X of all initial conditions admitting a safe input is known as
the Maximal Controlled Invariant Set (MCIS), see [28]. Define
[xl,xh] := {x : xl ≤ x ≤ xh}, wherexl andxh represent
a lower and upper bound on the state vector, respectively.
Formally, the MCIS is given as follows.

Definition 2. The set[xl,xh] ⊆ X belongs to the MCIS if
and only if there existsu ∈ U such thaty(t,u,x0) /∈ B for
all t ≥ 0 and for all x0 ∈ [xl,xh].

Note that the definition above still holds when the set of
states is a singleton. As long as the system’s state remains
within the MCIS, there exists an input that avoids collisions.
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Therefore, the role of the supervisor is to ensure that the state
never leaves the MCIS, while modifying the input selected by
the drivers as little as possible.

Let u : R+ → Rn be the input returned by the supervisor.
The Supervisor Problemcan be posed as:

Problem 1 (Supervisor Problem). Given the current state
x0, the input signalumeas and a cost functionJ(umeas,u),
return u such that the future state will not enter the bad set
B, and so as to minimizeJ(umeas,u).

Here, asking for the future state not to enter the bad setB,
readsf(x0,u) ∈ Tx MCIS ∀t, whereTx MCIS denotes the
tangent coneat x to the MCIS and corresponds to the set of
all vectorsv such that:

lim
xk→x,xk,x∈MCIS

xk − x

‖xk − x‖
=

v

‖v‖
.

The above limit corresponds to the set of infinitesimal per-
turbations(xk − x) such thatxk ∈ MCIS. The supervisor
routine is then composed of the following sequential steps:

1) State prediction over a horizonθ givenuhyp.
2) Safety verification, ensuring that the set of predicted

states can be reached without collisions usinguhyp, and
that there exists an input that avoids collisions for all
t > θ, for all states in the set.

3) Control synthesis, when the safety verification fails.
The above supervisor is implemented as a discrete-time algo-
rithm, with a fixed time steppingτ (larger than the worst case
computational time). An illustration of this principle is given
in Fig. 3. We will analyse now the three steps separately.

IV. STATE PREDICTION

Even if the driver’s high-level objectives (e.g., go straight
or turn at the intersection) are assumed to be knowna-priori
inferred by a high-level intent identification algorithm [6],
[29], the supervisor can only measure the current brake and
acceleration input,um (see Definition 1). In the impossibility
of exactly knowing the drivers’ future desired control signal
udes, safety systems aiming to optimize a car’s response
aroundudes should therefore incorporate a suitable inference
algorithm for the signaludes. In this paper, we do not focus
on the way to infer a hypothesisuhyp, but we define our state
predictor so that the resulting architecture correctly works for
any possible hypothesis.

Let θ be the prediction horizon anduhyp(t) ∈ [umin,umax]
representany hypothesis on the driver’s behavior. Recall
that 0 is considered to be the current time at which the
supervisor problem is solved. The lower- and upper-bounds
of the estimated trajectory are defined as follows:

xl(t,uhyp) := x(t,u,x0) st.

{

u = umin for t ∈ [0, τ ]

u = uhyp(t) for t ∈ (τ, θ]
(4)

xh(t,uhyp) := x(t,u,x0) st.

{

u = umax for t ∈ [0, τ ]

u = uhyp(t) for t ∈ (τ, θ]
(5)

See Fig. 4 for an illustration. The following lemma holds as
a consequence of monotonicity.

Lemma 1. Given the current state measurementx0,
xl(t,uhyp) ≤ x(t,u,x0) ≤ xh(t,uhyp) for all 0 ≤ t ≤ τ
and for all u(t) ∈ [umin,umax].

Here, we relax the assumptions on the driver’s behavior of
[25], where the driver’s input was considered to be a fixed,
constant signal: equations (4) and (5) consider a control input
equal to umin and umax for t ∈ [0, τ ], respectively, and
uhyp ∈ [umin,umax] for t ∈ (τ, θ]. This is important to
guarantee that the supervisor proposed later is non-blocking,
a property that would not be satisfied if the state predictions
were solely based onuhyp(t).

V. SAFETY VERIFICATION

In order to guarantee safety, collisions should be avoided for
all future times. Hence, guaranteeing safety comes to ensuring
that the set of (infinite horizon) control actions avoiding all
conflicts is non-empty. Consider a prediction horizonθ and
an expected control signaluhyp(t). We formally define the
Verification Problem (VP) as follows.

Problem 2 (Verification Problem (VP)). Given the set of
state estimations[xl(θ,uhyp),x

h(θ,uhyp)], determine if there
exists an input signalu which guarantees thaty(t,u,x0) /∈ B
for all t ≥ 0 and for all x0 ∈ [xl(θ,uhyp),x

h(θ,uhyp)].

In other words, we need to verify that:

[xl(θ,uhyp),x
h(θ,uhyp)] ∈ MCIS. (6)

To verify the above condition, we exploit the representation
of the constraint (6) in terms of a scheduling problem, fol-
lowing the idea introduced in [13]. We briefly introduce this
equivalence in the following subsection.

A. Equivalence between Verification Problem and Scheduling
Problem

Let yl(t,u) = h(xl(t,u)) and yh(t,u) = h(xh(t,u)).
Define for each agenti with yi(0) ≤ ai the quantities
Ri := min{t ≥ 0 : yhi (t, umax) ≥ ai}, Di := min{t ≥ 0 :
yhi (t, umin) ≥ ai}. These two quantities are, respectively, the
minimum and maximum time at whichyhi (t, ui) reaches the
intersection (and 0 ifyhi (t, ui) > ai). Notice thatRi is always
finite, since by assumptionlimt→∞ yi(t, ui,max) = ẏi,max,
while Di can in general be infinite ifui,min can bring agenti
to a stop beforeai. For each agenti with yhi (0) ≤ ai, given a
real numberTi, definePi(Ti) := minui∈Ui

{t : yli(t, ui) = bi},
with constraintyhi (t, ui) ≤ ai ∀ t < Ti. If the constraint
cannot be satisfied, setPi(Ti) := ∞. If [yli(0), y

h
i (0)] ∩

(ai, bi) 6= ∅ definePi(Ti) := min{t : yli(t, ui,max) = bi},
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Figure 3. Illustration of the working principle of the proposed supervisory
control. Given the estimated driver intent and the current measurement of
the system’s state, a state prediction over a predefined horizon is performed.
For the resulting state predictions, the verification problem is solved: if the
verification succeeds, the driver’s input is returned; otherwise, a safe control
input needs to be computed.
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and if yli(0) ≥ bi definePi(Ti) := 0. Pi(Ti) is the earliest
time thatyli can reachbi, if yhi does not passai beforeTi.

A scheduling problem consists in assigning jobs to a re-
source satisfying given requirements [30]. Using the above
quantities, we can write the Verification Problem as a schedul-
ing problem where the intersection represents the resource, the
agents represent the job to be assigned to the resource, and
the time spent by each agent in the intersection is the length
of the job to be executed. The following result holds.

Theorem 1. The interval[xl(θ,uhyp),x
h(θ,uhyp)] ∈ MCIS

if and only if there exists a scheduleT = (T1, . . . , Tn) ∈ Rn
+

such that for alli:

Ri ≤ Ti ≤ Di, (7)

Ti ≥ Tj ⇒ Ti ≥ Pj(Tj). (8)

The proof follows directly from [15], and will be omitted
here. In accordance with the results of Theorem 1, the solution
to (6) can be found using Algorithm 1. Given the set of initial
conditions[xl(θ,uhyp),x

h(θ,uhyp)], Algorithm 1 calculates
R = [R1, . . . , Rn] and D = [D1, . . . , Dn] and retrieves a
schedule (if one exists) by testing all the possible ordering
permutations ofn agents.

There is also an extension of the scheduling problem defined
by (7) and (8) where jobs cannot be executed during specified
time intervals. These are known asinserted idle times(iit),
see [16]. This particular type of scheduling problem will
be necessary later for the derivation of a multi-objective
optimization algorithm.

VI. CONTROL SYNTHESIS

When safety verification fails (according to (6)), the last
stage of the supervisor routine requires the synthesis of a
safe control signal minimizing a given performance metric.
Before introducing the proposed optimization algorithm, let
us discuss the optimization objectives and the implementation
aspects of the supervisor algorithm. The supervisor routine
is implemented with a time steppingτ , meaning that the
generated output is the optimal input signalu for the interval
[0, τ ], i.e., until the next instant when the supervisor routine
is performed. Since the only information available from the
drivers is the current inputum, a sensible objective is to
minimize the difference between the supervisor correctionand

Algorithm 1 [T,answer] = ExactVP (x,um)
x0 ← x

uhyp(t) ← f(um) ∀t ≥ 0
for all i ∈ {1, . . . , n} do

given [xl(θ,uhyp),x
h(θ,uhyp)] calculateRi andDi

end for
for all permutations of{1, . . . , n} do

T1 ← R1

for i ∈ {2, . . . , n} do
Ti ← max(Pi−1(Ti−1), Ri

)
end for
if Ti ≤ Di for all i ∈ {1, . . . , n} then

return {T, yes}
end if

end for
return {∅, no}

the constant signalumeas(t), equal toum for all t ≥ 0. This
choice is suitable for the chosen numerical method given in
the sequel, which requests a constant signal, and approximates
well the drivers’ intent as long asτ is small with respect to
the drivers’ input rate of change. We will therefore define the
cost function as the infinity norm of the difference between
the supervisor output andumeas:

J(umeas,u) := ‖u− umeas‖∞. (9)

By using the infinity norm, we minimize the worst case
difference betweenui and umeas,i for all vehicles. We can
then formalize the following optimization problem:

min
u∈U

J(umeas,u)

subject to x(θ,u,x0) ∈ MCIS,
(10)

where the optimization constraint is expressed as the solution
of the Verification Problem, and can be addressed using the
techniques discussed in [13], [18], which exploit a similar
equivalence to the one presented in Section V-A. In the sequel,
we provide a numerical strategy to solve problem (10).

Remark 1. Note that this approach differs from previous
works in the domain, which ignore in their design any opti-
mality arguments. In the non-optimized implementation of the
Supervisor Problem presented in [13], [15]–[18], no attempt
is done to approximate the drivers’ intent when the drivers’
input is overridden. Hence, this is equivalent to solving(10)
with the cost function

J(udes,u) :=

{

0 if umeas = u,

1 if umeas 6= u.
(11)

This corresponds to returningumeas whenever this maintains
the state within the MCIS, and to returning an arbitrary input
u such thatx(θ,u,x0) ∈ MCIS otherwise. Though effective,
this can lead to unwanted or unnecessarily aggressive decel-
erations/accelerations.

A. Single objective control design

Let ubound be an upper bound to (9). Problem (10) can then
be reformulated as:

min
u∈U

ubound

subject to ‖u− umeas‖∞ ≤ ubound

x(θ,u,x0) ∈ MCIS.

(12)
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Clearly, problems (10) and (12) are equivalent: the solution of
(12) minimizingubound corresponds to the optimal solution of
(10). However, the search space of (12) is a functional space.
To simplify the optimization problem, define MCIS(ubound) as
the set of all statesx ∈ X satisfying the Verification Problem
under the constraint:

‖u(t)− umeas(t)‖∞ ≤ ubound, for t ∈ [0, θ]. (13)

We can then write:

min
ubound∈R+

ubound

subject to x0 ∈ MCIS(ubound),
(14)

where the search space is now the non-negative real line. The
following result holds.

Lemma 2. The optimal cost of(12) is equal to the optimal
cost of (14).

Proof. Let u
′
∗
bound andu∗

bound represent the optimal costs of
(12) and (14), respectively. The following two arguments hold:

• u∗
bound ≥ u

′
∗
bound : If x0 ∈ MCIS(u∗

bound), then there
exists ū such that‖ū−udes‖∞ ≤ u∗

bound for all t ∈ [0, θ]
andx(θ, ū,x0) ∈ MCIS. Take nowu = ū for t ∈ [0, θ]
and u = udes for t > θ. This gives‖u − udes‖∞ ≤
u∗
bound andx(θ,u,x0) ∈ MCIS. Thus,(ū, u∗

bound) is a
feasible solution for (12).

• u
′
∗
bound ≥ u∗

bound : If x(θ,u,x0) ∈ MCIS and ‖u −
udes‖∞ ≤ u

′
∗
bound, thenx0 ∈ MCIS(u

′
∗
bound). Therefore,

u
′
∗
bound is a feasible solution for (14).

Because of the previous two statements,u∗
bound = u

′
∗
bound.

The optimal costu∗
bound of (12) is the smallest value of the

cost function (9) for which all agents can avoid collisions.The
optimal solutionu∗

bound to (14) can be numerically computed
using the bisection method (see Algorithm 2), and an optimal
solution of (12) retrieved by selecting an inputu satisfying
the constraints of (12) forubound = u∗

bound. Ways to construct
such an input are explained in [13], for example.

Note that there can be multiple optimal solutionsu with
the same costu∗

bound: an emergency manoeuvre necessary to
avoid a collision between two vehicles may set a largeu∗

bound,
hindering the optimization of the supervisor correction for a
third vehicle unaffected by the collision. This is particularly
clear in the results presented in Section VIII-A. In other words,
there is a set of optimal solutions to problem (10), and the
single-agent cost functionsJi(umeas,i, ui) induce a preorder
on this set. In the next section, we explore the solution struc-
ture of (12) in terms of Pareto optimality. We formulate the
Supervisor Problem as a multi-objective optimization problem
and show how to retrieve an optimal solution.

Algorithm 2 Numerical solution of (14)
1: Initialise U = maxi(ui,max − ui,min), L = 0
2: while U − L > thresholddo
3: ubound = (U + L)/2
4: if x0 ∈MCIS(ubound) then
5: U = ubound

6: else
7: L = ubound

8: end if
9: end while

Remark 2. Algorithm 2 inherits the complexity of the verifi-
cation stepx0 ∈ MCIS(ubound), since the bisection loop is
O(1). Therefore, the complexity of optimally solving (10) is
comparable to that of solving the Verification Problem.

Remark 3. The optimality of problem(12) is not dependent
on uhyp. A less accurate hypothesisuhyp will only increase
the number of interventions (i.e., the total time the supervisor
overrides the driver’s input). Once overriding, the optimization
procedure is independent ofuhyp and it is shown here to be
Pareto optimal. Recall that safety is always guaranteed dueto
the robust state prediction fort ∈ [0, τ ].

B. Multi objective control design

Rewrite problem (10) as the following multi-objective op-
timization problem:

min
u1∈U1

J1(umeas,1, u1)

min
u2∈U2

J2(umeas,2, u2)

...

min
un∈Un

Jn(umeas,n, un)

subject to x(θ,u,x0) ∈ MCIS.

(15)

We introduce the following definition.

Definition 3. An admissible solutionu of (15) is called
weak Pareto optimal if there exists no admissible solution
u′ such that Ji(umeas,i, u

′
i) < Ji(umeas,i, ui) for all i;

among the weak Pareto optimal solutions,u is called Pareto
optimal if there exists no admissible solutionu′ 6= u such
that: (i) Ji(umeas,i, u

′
i) ≤ Ji(umeas,i, ui) for all i and

(ii) Ji(umeas,i, u
′
i) < Ji(umeas,i, ui) for at least onei. An

illustration is presented in Fig. 5.

It follows from Definition 3 that Pareto optimal solutions are
not comparable in the preorder induced by (15),i.e., all Pareto
optimal solutions are equally good. Considering Definition3,
we introduce our next result.

Lemma 3. All optimal solutions of (10) are weak Pareto
Optimal for (15).

Proof. We prove this result by contradiction. Assume that
there is an optimal solutionu of (10) that is not Pareto optimal
for (15). This means that there exists a solutionu′ of (15)
such thatJi(umeas,i, u

′
i) < Ji(umeas,i, ui) for all i. Then

J(umeas,u
′) < J(umeas,u) in (10), which contradicts the

optimality of u.

By the above lemma, any optimal solution of (10) is at
least weak Pareto optimal. Nevertheless, our ultimate goalis to
select, among all optimal solutions, one that is Pareto optimal.

To find the optimal solution to (15), we will exploit in the se-
quel the equivalence described in SectionV-A. Recall now the
definitions of the quantitiesRi, Di andPi and note that they
are all dependent on the setUi. In the presence of constraint
(13), such quantities become a function of the constraining
quantity ubound. Hence, we defineRi(ubound), Di(ubound)
and Pi(Ti, ubound) as in Theorem 1, with the additional
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Pareto optimal solution
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Figure 5. Illustration of Pareto and weak-Pareto solutions, according to Def.3.

constraint‖u(t) − umeas(t)‖∞ ≤ ubound for t ∈ [0, θ]. We
introduce the following definition.

Definition 4 (Scheduling Problems). Letting SP denote a
scheduling problem defined by(7) and (8), we write

• SP(ubound) when the scheduling quantities are computed
under the constraint(13).

• SP(u1,bound, . . . , un,bound) when the constraint(13) is
different for different agents.

• T ∈ SP(ubound) if T is a feasible schedule of
SP(ubound).

• SP(L, ubound) when a restriction ofSP(ubound) to a
subsetL of the agents{1, . . . , n} is considered.

• SP(ubound, IIT ) when an additional constraint:

(Ti, Pi(Ti)) ∩ (αj , βj) = ∅, ∀ i, j 6= i. (16)

is added toSP(ubound), given a set of inserted idle times
IIT:= {[α1, β1], [α2, β2], . . .}.

• SP(L, ubound, IIT) when constraint(16) is added to
SP(L, ubound), given a set of inserted idle times IIT:=
{[α1, β1], [α2, β2], . . .}.

Using this new notation and Theorem 1, problem (14) can
be rewritten as

min
ubound∈R+

ubound

subject to ∃T : T ∈ SP(ubound).
(17)

The following holds.

Lemma 4. Consider the quantitiesRi, Di and Pi(Ti) of
SP(ubound), and R′

i, D′
i and P ′

i (Ti) of SP(u′
bound) with

u′
bound < ubound. We have thatRi ≤ R′

i, Pi(Ti) ≤ P ′
i (Ti),

Di ≥ D′
i.

Proof. The property follows from the fact thatSP(ubound) is
a relaxation ofSP(u′

bound). Note that changing the value of
ubound is equivalent to changing the bounds of the feasible
set of inputsUi. Hence,Ui(u

′
bound) ⊆ Ui(ubound) whenever

u′
bound < ubound, and sinceR′

i, D
′
i andP ′

i (Ti) are defined for
the extremal points ofUi(u

′
bound), the previous result holds.

It follows from the previous result that by decreasing the
value of ubound one tightens the constraints ofSP(ubound).
As a consequence, we can interpret the optimal cost of (12)
as the valueu∗

bound for which a subset of jobs verifies the
constraints exactly, i.e., would not be schedulable for a smaller
value ofubound. Based on this interpretation, we introduce the
following definition.

Definition 5 (Tight set). Consider a scheduleT ∈
SP(ubound, IIT). We say that an ordered set of jobs and
inserted idle timesi ∈ {1, . . . ,m} is tight if the following
conditions are satisfied: (i) all jobs and iit’s except the
first start exactly after the previous job or iit is done, i.e.,
Ti = Pi−1(Ti−1), or Ti = βi−1, or αi = Pi−1(Ti−1), or
αi = βi−1; (ii) if the first element is a job it starts exactly at
its release time, i.e., atR1; (iii) if the last element is a job, it
starts exactly at its deadlineDm.

In words, a tight set is a set of jobs and iit’s whose scheduled
starting time cannot be changed without changing the order in
which they are executed. Note that a single job with equal
release time and deadline is a minimal example of a tight set,
and that an iit is by definition always a minimal tight set.

Given a tight set for a scheduleT ∈ SP(ubound, IIT), let
constrainedjobs denote the subset of jobs which do not satisfy
constraints (7), (8), or (16) ifubound is reduced, unless we
change the order with which they are scheduled inT. Let
Pi(ubound) andDi(ubound) denote the scheduling quantities
of problem SP(ubound) with dependence onubound. The
following definition is introduced.

Definition 6 (Constrained and constraining jobs). A tight jobi
is constrainedin a scheduleT for a problemSP(ubound, IIT )
if i) it is followed by another tight jobj andPi(Ti, u

′
bound) >

Tj for any u′
bound < ubound, or ii) it is followed by an IIT

[α, β] and Pi(Ti, u
′
bound) > α for any u′

bound < ubound, or
iii) Ti > Di(u

′
bound) for anyu′

bound < ubound.
A tight job isconstrainingif it is not constrained and it is

preceded by a constrained job in the same set of tight jobs.

Hence, one can think of the constraining jobs for a schedule
T ∈ SP(ubound, IIT) as those jobs which limit the minimum
value ubound can take while allowingT to be adapted to
be feasible inSP(ubound, IIT), without changing the relative
order of jobs and iit’s. This leads us to the concept of a
constraint-minimal schedule, defined as follows.

Definition 7 (Constraint-minimal schedule). Consider a
scheduleT ∈ SP. The schedule is constraint-minimal if no
other scheduleT′ 6= T, T′ ∈ SP has a set of constrained
jobs that is a strict subset of that ofT.

An illustrative example of constrained/constraining jobsand
constraint-minimal schedules is given in Fig. 6.

From Lemma 4, it follows thatu∗
bound defines the subset of

jobs that verify the scheduling constraints exactly,i.e., would
not be schedulable for a smallerubound values. Hence,u∗

bound

corresponds to the worst case scenario imposed by this set of
jobs, as the remaining jobs could still be schedulable for lower
values ofu∗

bound. The proposed solution to find an optimal
value ofu∗

bound,i is based in the following construction.

Procedure 1. (Reduction step)
• Consider a scheduleT ∈ SP(u∗

bound, IIT), whereu∗
bound

is the optimal cost of (12) with constraint ∃ T :
T ∈ SP(ubound, IIT), and assume thatT is constraint-
minimal.

• Define a setC of constrained jobs andL of jobs that are
not constrained inT for SP(u∗

bound, IIT), and define a
new setIIT′ := IIT ∪ {[Ti, Pi(Ti)]∀i ∈ C}.

• Call u′∗
bound the optimal cost of(14) with constraint

∃ T′ : T′ ∈ SP(L, ubound, IIT
′).



IEEE TRANSACTIONS ON HUMAN–MACHINE SYSTEMS, VOL. , NO. , APRIL 2016 7

Tight jobs

Loose jobs

1
P1

D2T1

T2

T  
5

P2

D1

D5

D  (u         )' *
bound2

D3R 3

T  4

R

T3 R 4 D4

R 5

1
P1

D2

T'1

T'2

T'  
5

P2

D1

D
5S

ch
ed

u
le

 T
'

D3R 3

T'  
4

R

T'3R 4 D4

R 5

P  (u         )' *
bound1

R 2

R 2

S
ch

ed
u

le
 T

Veh. 1

Veh. 2

Veh. 3

Veh. 4

Veh. 5

Veh. 1

Veh. 2

Veh. 3

Veh. 4

Veh. 5

Figure 6. Illustration of two feasible schedules forSP(u∗

bound
, IIT). Jobs

1 and 2 are constrained in both schedules, while job 5 is constraining in T
and not tight inT ′. ScheduleT ′ is then the constraint-minimal between the
two.

• Finally, consider the scheduling problem
SP(u′′∗

bound,1, . . . , u
′′∗
bound,n, IIT), where u′′∗

bound,i :=
u∗
bound if i ∈ C, andu′′∗

bound,i := u′∗
bound if i ∈ L.

In other words, we suggest to identify the subset of con-
strained jobs verifying the scheduling constraints exactly with
u∗
bound, and remove them from the optimization problem (12)

by reserving their execution time as iit. This lead us to the
following result.

Lemma 5. The set of constrained jobs inT for
SP(u∗

bound, IIT) is a subset of the set of constrained
jobs in any T′′ ∈ SP(u′′∗

bound,1, . . . , u
′′∗
bound,n, IIT) for

SP(u′′∗
bound,1, . . . , u

′′∗
bound,n, IIT).

Proof. This is a consequence of selecting a constraint-
minimal scheduleT. First of all, notice that (i)u′∗

bound <
u∗
bound, by Lemma 4 and sinceu′∗

bound is computed by
removing from SP all constraining jobs, and that (ii)
for any T′′ ∈ SP(u′′∗

bound,1, . . . , u
′′∗
bound,n, IIT), T′′ ∈

SP(u∗
bound, IIT). The only way that a job which is con-

strained inT for SP(u∗
bound, IIT) can be not constrained

in T′′ for SP(u′′∗
bound,1, . . . , u

′′∗
bound,n, IIT), is if its con-

straining job j is scheduled at a different time inT′′ than
in T. However, sinceT is constraint-minimal, schedul-
ing j at any different time would generate a new con-
strained jobk in T′′ for SP(u∗

bound, IIT). We have defined
u′′∗
bound,k = u′∗

bound < u∗
bound, therefore this would imply

T′′ /∈ SP(u′′∗
bound,1, . . . , u

′′∗
bound,n, IIT).

By iterating the reasoning of Procedure 1, it is then possible
to retrieve a Pareto optimal solution to problem (15). The
structure of the proposed multi-objective optimization proce-
dure is presented in Algorithm 3, and leads to the next result.

Theorem 2. Algorithm 3 provides a Pareto optimal solution
to (15).

Proof. The algorithm is implementing the process described
before Lemma 5, and returns a scheduleT∗ and a solution
to (15) in terms of a set of optimal costsJ∗

1 , . . . , J
∗
n. From

Lemma 5, we can conclude that all jobs for the schedule
T∗ ∈ SP(J∗

1 , . . . , J
∗
n) are constrained, or haveJ∗

i = 0. In
both cases, it is not possible to find a feasible schedule for a

Algorithm 3 [u∗
bound,T

∗] = MultiObjOpt(x,um)
1: x0 ← x

2: umeas(t) ← um ∀t ≥ 0
3: Initialise L = {1, . . . , n}, IIT= ∅, U∗ =∞
4: setk = 0
5: while L is nonempty orU∗ > 0 do
6: k = k + 1
7: Optimization step: Solve problem (17):minubound

8: subject to ∃T : T ∈ SP(L, ubound, IIT )
9: and callU∗ its optimal cost

10: Selection step:Select a scheduleTk ∈ SP(L, U∗, IIT )
11: that is constraint-minimal
12: Reduction step:
13: for all jobs i ∈ L that are constrained forTk do
14: removei from L

15: add the interval[Ti, Pi(Ti)] to IIT
16: setu∗

bound,i
:= U∗, T ∗

i := T k
i

17: end for
18: end while
19: return (u∗

bound,1
, . . . , u∗

bound,n
), (T ∗

1
, . . . , T ∗

n )

problemSP(J ′∗
1 , . . . , J ′∗

n ) with J ′∗
i < J∗

i for at least onei,
thereforeJ∗

1 , . . . , J
∗
n is a Pareto optimal solution.

Remark 4. The complexity of Algorithm 3 is defined by the
complexity of the optimization step, which in turn is deter-
mined by the complexity of the test at line 4 in Algorithm 2.

The outcome of the multi-objective optimization algorithm
and the advantages with respect to the single-objective prob-
lem are discussed later in Section VIII-A, where some simu-
lation examples are presented.

VII. SUPERVISORY CONTROL

In this section, we present a supervisor algorithm that solves
Problem 1, by sequentially performing the state prediction,
the safety verification and the control synthesis stages. The
supervisor overrides the driver’s input signal if and only if the
safety verification stage fails, i.e., whenever

∄ u ∈ U s.t. y(t,u,x0) ∩B = ∅, ∀t ≥ 0,

∀x0 ∈ [xl(θ,uhyp),x
h(θ,uhyp)],

for all the agentsi for which yi(0) ≤ bi. Recall thatuhyp is
defined in Definition 1. In such cases, the overriding signal
uopt is given as

uopt,i := arg inf
ui∈Ui

{

t ≥ 0 : yli(t, ui) ≥ bi
}

with constraints: ‖ui − umeas,i‖∞ ≤ u∗
bound,i

yhi (t, ui) ≤ ai for t < T ∗
i
(18)

where(u∗
bound,i, T

∗
i ) are given by Algorithm 3. In words, the

supervisor defines, when needed, an inputuopt,i(t) allowing
agenti to exit the intersection no later thant = Pi(T

∗
i ) or to

enter it beforeT ∗
i , while satisfying input constraintsu∗

bound,i.
The structure of the proposed supervisor algorithm is givenin
Algorithm 4. The following result holds.

Theorem 3. Assume thatx0 ∈ MCIS. Then, Algorithm 4(i)
solves the Supervisor Problem and(ii) is nonblocking.

Proof.

• To prove (i), consider that Algorithm 4 returnsudes as
long as a schedule exists satisfying Theorem 1,i.e., as
long as [yl(t,uhyp),y

h(t,uhyp)] ∩ B = ∅, ∀t ≥ 0. If
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that is not the case, condition (6) is not satisfied and
an (override) inputuopt is returned, which is defined
according to Algorithm 3. As such input is safe and has
been derived s.t. it minimizesJ(umeas,u), this concludes
the proof.

• Let u be the supervisor output at timet = 0.
From Lemma 1, it follows that x(τ,u,x0) ∈
[xl(τ,uhyp),x

h(τ,uhyp)], ∀ u. As shown before, the
proposed algorithm correctly solves the Supervisor Prob-
lem, which means that[yl(t,uhyp),y

h(t,uhyp)] ∩ B =
∅, ∀t ≥ 0. Hence, this yields that∀ x(τ) ∈
[xl(τ,uhyp),x

h(τ,uhyp)], there exists at least an̄u s.t.
[yl(t, ū),yh(t, ū)] ∩ B = ∅, ∀t ≥ τ , where ū is the
supervisor output at timet = τ . Therefore, the admissible
set of the supervisor at timeτ is non-empty,i.e., the
supervisor is non-blocking. This concludes the proof.

Remark 5. The previous results can be extended in order
to also cope with measurement noise. Using an approach
similar to [15], the proposed algorithm can be reformulated
based on the computation of the Maximal Robust Controlled
Invariant Set, i.e., the largest set of states of inputs that
avoids conflicts for all positive times and for any admissible
disturbance. By leveraging the monotonicity properties and
the uniform continuity of the system’s flow, one can derive a
robust supervisor algorithm.

A. Approximate supervisor

In the previous section, we provided an algorithm that
determines exactly the membership in the MCIS according
to (6). But this verification is often a computationally difficult
problem, and has been proved to be NP-hard for some collision
avoidance problems of practical interest [13], [31]. A number
of exact algorithms have been proposed, whose application to
systems with more than a few agents is not practical [10]–[12],
[14]. Some of these results are applicable only to the two-agent
conflict resolution problem, and the others have exponential
complexity in the size of the state space.

Nevertheless, approximations exist with polynomially
bounded running time. An obvious way to reduce the com-
putation time of Algorithm 3 to polynomial is to solve a
scheduling problem SPfixed-order with a pre-determined job
order instead of SP at lines 8 and 10 of Algorithm 3. This,
however, does not guarantee in general an error bound. To
choose a job order with a guaranteed error bound we can pre-
process jobs using the ideas presented in [13], [15], [18]: we
define a timeδmax(ubound), which is long enough so that any
agent can cross the interval(ai, bi) in at mostδmax(ubound),
and allocate this fixed amount of time to each agent. Define

Algorithm 4 Supervisor(x,um)
1: uhyp(t) ← f(um) ∀t ≥ 0
2: umeas(t) ← um ∀t ≥ 0
3: {T, answer}← ExactVP(x0,uhyp)
4: if answer= yesthen
5: leave the drivers do whatever they want.return
6: else
7: {u∗

bound, T∗}← MultiObjOpt (x0,umeas)
8: override the driver input usinguopt defined in (18).return
9: end if

SPfixed-length as the scheduling problem with jobs of equal
length δmax(ubound). By substituting SP by SPfixed-length at
lines 8 and 10 of Algorithm 3, we can exploit the polynomial-
time scheduling algorithm proposed in [32] (and reported as
algorithm POLYNOMIAL TIME in [13]) to compute an optimal
schedule, i.e., an optimal job order. Note that the solution
found is a Pareto optimal solution among all schedules with
job lengthsδmax(ubound). This optimal order is then fixed and
used in one more run of Algorithm 3 with SPfixed-order.

In the next section, we will present simulation results
highlighting the advantages of this approximate algorithm.

VIII. R ESULTS

We consider in the sequel a multi-vehicle scenario as
depicted in Fig. 2. We assume that all agents are moving
over different paths and that their longitudinal dynamics are
described by double integrator dynamics given by:

ẍi(t) = ui(t), yi(t) = xi(t), (19)

whereẋi ∈ [0m/s, 17m/s] andui ∈ [−5m/s2, 3m/s2], ∀i.
Note that a linear model has been chosen here for the sake
of simplicity. Nevertheless, the results of this paper alsohold
for non-linear dynamical models that satisfy the monotonicity
properties mentioned in Section III. With the exception of
Fig. 8 and 11, each subfigure is composed of two panels. In
the top panel, the intersection is represented by a grey box,and
the position trajectories of the different vehicles are in color.
In the lower panel,u andumeas are represented by solid and
dotted lines, respectively. The following results were obtained
on a 2.8 GHz, 16 Gb RAM laptop with Windows10, using
Matlab 2016b.

A. Single-objective vs multi-objective optimization

We analyse in this section the performances of the single-
and multi-objective algorithms. For this scenario, the initial
conditions of the system arex = [(0, 10), (24, 10), (32, 10)]
and the prediction horizon isθ = 5s. To simplify the
interpretation of the results, we assume that the drivers ofall
vehicles always request an input equal touhyp = umeas = 0.5
(horizontal dotted line in the bottom panels of Fig. 7), and that
the intersection corresponds to the interval[60, 75]m along all
vehicles’ path.

Fig. 7(a) shows the result of the single-objective opti-
mization problem (14), for which the optimal solution is
u∗
bound = 0.53. One can see that, to avoid a collision between

the blue (solid line) and green (dashed line) vehicle, the
optimal control policy forces all agents to deviate from their
desired control input. All vehicles apply a control signal where
the maximum difference with respect toumeas corresponds to
u∗
bound, see the zoom on the lower image of Fig. 7(a). Note,

however, that the red vehicle (dotted line) is not involved in
an immediate collision with the remaining vehicles and there
is no reason to alter its trajectory.

Fig. 7(b) shows the result of the multi-objective optimization
problem (15). As expected, the performance of the opti-
mization algorithm improves. More precisely, only the blue
(solid line) and green (dashed line) vehicles’ trajectories are
corrected, allowing the red vehicle (dotted line) to continue its
desired trajectory. Without needing to correct unnecessarily the
red vehicle, the multi-objective optimization algorithm is, as
expected, less restrictive.



IEEE TRANSACTIONS ON HUMAN–MACHINE SYSTEMS, VOL. , NO. , APRIL 2016 9

a b

t [s] t [s]

u
[m

/s
2
]

u
[m

/s
2
]

x
[m

]

x
[m

]

ubound

udes

-4 -4

-2 -2

0

0

0

0

0

0

0

1

2

2

2

2

4 46 68 8

20 20

40 40

60 60

80 80

Figure 7. Single-objective vs multi-objective optimization: (a) single-
objective; (b) multi-objective optimization withθ = 5 anduhyp = umeas =
0.5 (black dotted line).

B. Naturalistic data validation

We validate now the performances of our control algorithms
with naturalistic data, using two Volvo S60 T6 vehicles. We
considered an intersection scenario as illustrated in Fig.8(a),
and performed multiple tests in velocity ranges going from
20 km/h to 40 km/h. For positioning, each vehicle was
equipped with inertial measurement and DGPS modules OXTS
RT2002. Vehicles were used to generate realistic trajectories
at intersections, which were later fed as user-desired inputs
to our supervisor algorithm (i.e., there is no online supervisor
controlling the vehicles). The GPS-based trajectories arepre-
sented in Fig. 8(b). We defined the intersection as an interval
centered around coordinate0 on each path. The length of the
each car is4.62m and the intersection width is10m. The
distanced travelled by each vehicle along its own path is given
in Fig. 8(c).

In Fig. 9, we used the vehicle model (19) with the driver’s
input um being equal to the second derivative of the trajec-
tories of Fig. 8(c) and of an additional third trajectory. We
assume thatuhyp is a constant signal equal to the last mea-
surementum. In other words,uhyp = umeas, see Definition 1.
In the figure,umeas is illustrated as a dotted curve of color
corresponding to the color of each vehicle. The dotted curve
is only visible whenum is different than the input returned
by the supervisor. The supervisor runs with a time stepping of
τ = 0.1s and we defineθ = 1s. The time interval where the
supervisor is overriding the drivers’ input is highlightedas the
red-portion of the time axis in the bottom panel of Fig. 9(b).

In Fig. 9(a), where the vehicles perform a safe manoeuvre,
we can see that the supervisor never overrides the drivers:
the hypothesis on the driver’s behavioruhyp is always safe
according to (6). Such results show that, given the expected
input signaluhyp, the proposed supervisor does not unnec-
essarily override the proposed control input and leaves the
control of the vehicle to the drivers whenever their behavior is
considered safe. Fig. 9(b) considers a different data set ofthree
vehicles. Here, the vehicles’ inputs have been (artificially)
shifted in time so that it is coherent with a collision between
the blue (solid line) and red (dotted line) vehicles, while
the green vehicle (dashed line) performs a safe manoeuver:
considering the collision threat, its stops before reaching the
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Figure 8. Experimental setup for data collection: (a) illustration of the
intersection scenario; (b) naturalistic trajectories of the two vehicles; (c)
normalized trajectories, where the intersection is set to be at the origin with a
length equal to twice the size of the vehicles. X and Y are local coordinates.
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Figure 9. Supervisor Algorithm 4 applied to a real set of datawith τ = 0.2s
and θ = 1s: (a) a collision-free case; (b) a collision case. In the bottom
panels, the dotted curves represent the measured input, while the continuous
curves correspond to the input given by the supervisor. The time axis is red
if the supervisor is overriding the desired input, black otherwise.

intersection. As expected, the proposed supervisor is ableto
identify vehicles that need to be overridden from those thatdo
not: the supervisor only overrides the blue (solid line) andred
(dotted line) vehicles fromt = 9.4s until t = 12.5s, see the
red portion of the x-axis Fig. 9(b). During this interval, the
blue (solid line) vehicle is forced to accelerate while the red
(dotted line) decelerates, and this while minimizing the infinity
norm error with respect to the input provided by the drivers.
However, the green (dashed line) vehicle is never overridden
(it is behaving safely), even thoughuhyp is different from the
driver’s desired input. For this scenario, the maximum timeto
run the optimization algorithm was0.03s.

C. Simulation results

In the following, we present simulation results for a three-
vehicle system. In all simulations the initial conditions of the
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Figure 10. Simulated three-vehicle scenarios withτ = 0.1s: (a) the non-optimized solution; the proposed optimal supervisor (Algorithm 4) with: (b)θ = 0.1s;
(c) θ = 0.2s; (d) θ = 1s; (e) θ = 2s. In the bottom panels, the dotted curves represent the measured input, while the continuous curves correspond to the
input given by the supervisor. The time axis is red if the supervisor is overriding the desired input, black otherwise.

system arex = [(0, 10), (8, 10), (16, 10)] and the supervisor
runs with a time stepping ofτ = 0.1s. For simplicity, we
assume that the drivers of all vehicles always request an input
equal toumeas = 1, and that the intersection corresponds to
the interval[60, 75]m along all vehicles’ path. Furthermore, in
order to discuss later the influence of the prediction horizon θ,
we consider four distinct valuesθ ∈ {0.1, 0.2, 1, 2} seconds.
We consider the non-optimized approach given in [18] for
all vehicle i in the interval [ai − 30, bi]m. Vehicles outside
this interval never need an override (they can stop before
the intersection or they have passed it), and can therefore be
removed from the supervisor problem.

The non-optimized supervisor solution is presented in
Fig. 10(a), forθ = 0.1s. We will use this case to highlight the
advantages of the proposed optimal design. One can see that
at t = 3.2 seconds into the simulation, the supervisor detects
that vehicles are about to leave the MCIS and intervenes by
applying bang-bang control inputs.

Fig. 10(b) shows the behavior of the proposed optimal
supervisor whenθ = 0.1s. See that the time instant when
the supervisor intervenes for the first time is identical to
Fig. 10(a). However, the control input profiles differ. While
in Fig. 10(a) the supervisor immediately proposes bang-bang
inputs, in Fig. 10(b) the control inputs are optimized, see
the “stair-like” profile of the green (dashed) and red (dotted)
curves beforet = 4s. Our solution is able to identify vehicles
that need to be overridden from those that do not, see the red
(dotted line) trajectory, which is overridden slightly later than
in Fig. 10(a). This effect in magnified in Fig. 7.

Fig. 10(c) considers the same scenario whenθ = 0.2s.
By optimizing over a longer prediction horizon, it providesa
better approximation of the drivers’ inputs while avoidingtwo
consecutive collisions: a three-vehicle conflict fromt = 3s to
t = 4.6s and a two vehicle’s conflict fromt = 4.6s tot = 6.3s.

Finally, Fig. 10(d-e) consider the cases whereθ = 1s and
θ = 2s, respectively. When compared to the previous cases, we
can see that this leads to more driver-friendly, less aggressive
manoeuvres. Generally speaking, there is a trade-off on the
restrictiveness of the supervisor: as the value ofθ increases,
interventions will be triggered earlier than strictly necessary.
This is clear if one compares the red segment of the horizontal
axis (which represents the period during which the supervisor
intervenes) between Fig. 10(d) and 10(e).

We also perform randomized simulations for a set of10, 000

initial conditions. We consider a three vehicle setup requesting
a udes = uhyp = 1, with a randomly chosen initial
positionxi(0) ∈ [0, 60]m and speeḋxi(0) ∈ [vmin, vmax], ∀i.
The intersection corresponds to the interval[60, 75]m along
the vehicles’ paths, the simulation time is8s and τ =
0.1s. This means that there are (nr. of initial conditions ×
nr. of vehicles× simulation time/τ ) samples. The results of
randomized simulations are presented in Fig. 11. We consider
the multi-objective optimization algorithm (15) for different
values ofθ, and we compare our optimal approach with the
non-optimized one. In panel (a), we show in the horizontal axis
the input differenceξ and in the vertical axis the percentage
of samples for which(ui(kτ) − ui,meas(kτ)) < ξ, i.e., the
percentage of samples for which the supervisor overrides the
drivers’ request with an input lower that(ui,meas(kτ) + ξ)
with ξ < 0. Ideally, the curves should be as low as possible
on the left-hand side, i.e., the percentage of samples for which
the input mismatch is large should be as low as possible. One
can see that havingθ = 1s andθ = 2s greatly reduces the
number of large interventions when compared to the non-
optimized solution (blue line)1 . One can also observe that
the optimal solution withθ = 0.1s andθ = 0.2s does not
increase the optimality level. Nevertheless, as shown in Fig. 7,
the proposed solution is able to identify vehicles which need
to be overridden from those who do not. In panel (c), we
show the symmetric case, i.e., on the vertical axis is shown the
percentage of samples for which(ui(kτ)− ui,meas(kτ)) > ξ
with ξ > 0. As expected, increasing the value ofθ reduces the
number of interventions with a large mismatch with respect to
the drivers’ intent. Finally, we can observe in panel (b) the
percentage of non-overridden samples: increasingθ slightly
increases the percentage of overrides, from11% for the non-
optimized solution (i.e.,89% of non-overrides) to17% for
our optimal solution withθ = 1s. However, as seen on the
right- and left-hand side of panels (a) and (c), respectively,
the number of very small interventions is visibly higher
for the optimal solution with respect to the non-optimized
one. Increasing the value ofθ increases the number of total

1The evolution of the system depends on the supervisor override as well as
on the future requested input. Hence, a control strategy which is suboptimal for
a given set of initial conditions may, in the long run, allow amore “gentle”
override signal. Had we just compared the maximum of the infinity norm
difference between the desired and override input, all strategies would have
looked the same.
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Figure 11. Probability of having(u(kτ) − udes(kτ)): (a) less than; (b)
equal to or; (c) greater than the value displayed on the abscissa axis. The
probabilities are computed via a Monte Carlo simulation on aset of10, 000
randomized initial conditions and for different values ofθ.

overrides but reduces the difference(u − umeas). Hence, by
tuning the value ofθ, one can better approximate the driver’s
desired input and provide a more user-friendly experience.The
worst computation time over the2.430.000 samples is0.087s.

D. Approximate algorithm

We present in this section simulation results for the ap-
proximate supervisor discussed in Section VII-A. We consider
an eight-vehicle scenario, where initial conditions for each
vehicle i is given asxi = (i ∗ 8, 10), ∀i = {0, . . . , 7}. The
maximum time to run the optimal algorithm for an eight-
vehicle problem being0.15s, we have therefore defined the
time stepping asτ = 0.2s. As before, it is assumed that
uhyp = 1 (horizontal dotted line), and that the intersection
corresponds to the interval[60, 75]m along all vehicles’ path.

Fig. 12(a)-(b) considerθ = 0.4s andθ = 2s, respectively.
By optimizing the trajectories over a longer prediction horizon,
one can see that the supervisor approximates better the drivers’
desired inputs. Note that, as discussed before, interventions
are triggered earlier as the value ofθ increases. Indeed,
while in Fig. 12(a) the first intervention happens att = 1s
in the simulation, in Fig. 12(b) interventions are triggered
immediately at the initial time. Moreover, while in Fig. 12(a)
the red vehicle is not able to cross the intersection within20s
of simulation, in Fig. 12(b) all vehicles clear the intersection.

Recall that the necessity of approximate solutions relies on
the fact that the exact supervisor algorithm may be untractable
for relatively small scale scenarios.However, by using the
approximate algorithm proposed in [32], we are able to solve
more complex problems. Here, the maximum computational
time is only 2.5 times higher than the exact solution for a
three-vehicle case, but for an almost three times bigger system.

IX. D ISCUSSION AND CONCLUSIONS

We presented an optimal supervisor for collision avoidance
at intersections leveraging results on scheduling theory.As
in an optimal constrained control framework (and Model
Predictive Control (MPC) in particular), there are two main
underlying aspects: (i) input/state constrained predictions; (ii)
a receding horizon implementation. A brief comparison is
given in the following:

• (i) Here, the variableθ in (12) and (14) can be seen
as a prediction horizon, defining how far ahead conflicts
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Figure 12. Approximate supervisor Algorithm 4 applied to a simulated eight-
vehicle scenario withτ = 0.2s and : (a)θ = 0.4s; (b) θ = 2s. In the bottom
panels, the dotted curves represent the measured input, while the continuous
curves correspond to the input given by the supervisor. The time axis is red
if the supervisor is overriding the desired input, black otherwise.

are detected. Hence, by keepingτ unchanged, one can
improve its performance by increasing the value ofθ.
This leads to more driver-friendly, less aggressive ma-
noeuvres. A great advantage with respect to MPC is
that the complexity of the Verification Problem remains
unchanged, independently ofθ.

• (ii) Normally, input, state and safety constraints are for-
mulated in optimal control-based approaches as inequal-
ities or box conditions for all prediction instants. Hence,
the number of decisions variables drastically increases for
large prediction horizons and infinite horizon problems
cannot easily be treated in practice. In this work, we
use a different approach and formalism: input, state
and safety constraints are incorporated in all problems
through the conditionx(τ,u,x0) ∈ MCIS. By leveraging
this formulation and the properties of the MCIS set,
we are in fact solving an infinite horizon optimization
problem that guarantees perpetual safety.

• (iii) The supervisor routine is implemented with a step-
ping τ . Hence, the supervisor’s output control signal is
only applied for the interval[0, τ ], i.e., until the next
supervisor step. By regularly computing a new control
policy, one can more easily cope with limited sens-
ing/communication disturbances, as well as mitigate and
compensate potential estimation errors onuhyp.

Optimal conflict resolution approaches are still rare in
literature. The major contribution of this paper is therefore the
inclusion of optimality arguments (with respect to the drivers’
desired input) into the design of our supervisor. This greatly
differs from previous works in this domain such as [15]–[18],
which ignore optimality and do not attempt to approximate
the drivers’ intent whenever the drivers’ input is overridden.
We also present a more generic, robust theoretical framework
when compared with our previous work [25]. More precisely,
we propose a solution robust to input uncertainties, easily
extendable to also cope with modelling and measurement
uncertainties by exploring a solution identical to [15]. In[33],
a two-step optimization procedure was presented, but lacksa
proof of optimality of the result of the two steps combined.
Here, we prove the optimality of our solution. Finally, we also
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adapted the approximation strategies proposed in [18] to work
as part of the optimal control design step. We are therefore able
to cope with a set of eight or more vehicles in real time.Future
research should approach scenarios with multiple vehiclesper
path and driver intent estimation techniques.
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