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Safety verification methods for human-driven
vehicles at traffic intersections:
optimal driver-adaptive supervisory control

Gabriel Rodrigues de Campos, Fabio Della Rossa, Alessabalmmbo

Abstract—We design an optimal, driver-adaptive supervisor for
collision avoidance at an intersection. The algorithm is ale to
identify optimal corrections to the human-decided inputs ad to
keep the system collision-free. To determine the set of safentrol
actions, we exploit the notion of maximal controlled invarant set.
We leverage results from scheduling theory to verify the safty
of a given control input, and propose an efficient optimizatbn
algorithm providing optimal solutions with respect to the drivers’
intent. We also present an approximate supervisor algoritin
that can be solved in polynomial time and has guaranteed errmo
bounds. Finally, we validate our approach with simulation results,
as well as on naturalistic data.

framework, a single supervisor functions as the process man
ager, and the control inputs are communicated over wireless
links. This setup requires two communication hops: one for
exchanging the state information and a second for the dontro
policy. In adecentralizedramework instead, we consider that
computation is performed by supervisor units installeddohe
vehicle, where each supervisor has access to global vehicle
information transmitted over omnidirectional communicat
links. The reader can refer to [9] for a detailed discussion o
decentralized and distributed sensing and control.

The problem of supervision for collision avoidance is dis-
cussed, among others, in [10]-[18], and is typically set in a
framework of verification for safety specifications. Though
standard general purpose algorithms exist, they are lkimite

[. INTRODUCTION by numerical complexity to handle problems involving just a

Modern transportation systems are increasingly relying ¢éW agents (typically two). A set of efficient solutions fdret
communication technologies and automatic control [1], [2intersection collision avoidance problem was proposed 8] [
and a particular area of interest of recent research on smi##g Scheduling Theory, and extended to more complex
mobility is intersection management. Even if interseaiorfcenarios in [15]-[18]. Note that all the aforementionepgra
represent a small part of the entire road system, they atcoffifus solely on the safety aspects, and ignore in their desig
for a significant part of traffic accidents. According to nece Optimality arguments: no attempt is done to approximate the
reports, 20 % and 21.5% of traffic fatalities during the lagtrivers’ intent when the drivers’ input is overridden. Henc
decade are intersection related within the EU and the USiere may be a mismatch between the input returned by the
respectively [3], [4]. Most important, close to 94% of aamids SUPErvIsor and the drivers’ _deswed_ input. To_ cope with this
are completely, or in part, due to human error as a result Rfoblem, we propose an optimal, driver-adaptive solutur
misinterpretation of a situation, inattention or the disnel approach is based on the solution of two separate problems:
of traffic rules [3], [5] Such a|arming numbers ]usufy thé|) the .Ver|f|Cat|0n PI’Oblem detel’mlnlng if there eX|S-tS an
design of increasingly sophisticated semi-autonomous aiut signal that leads all agents safely through the ieters
autonomous safety systems, aimed to provide more efficief®n; and (i) the Supervisor Problemreturning a safe and
comfortable, and almost accident-free road traffic.

In this paper we focus our attention on collision avoidance
algorithms at traffic intersections. We assume that humans
are driving each car, and that a (centralized or decentdiz
supervisor is in charge of ensuring the vehicles’ safety,(a
human-in-the-loop (HITL) system, see Fig. 1). We consider | Intent IObsemble
that the information on the environment and surrounding " mamn b
vehicles and an estimation on the drivers’ intent are abla | | 77777 7C 4
and exchanged via a wireless network between the vehicles.
We abstract from the perception and drivers’ intent estima-
tion problems, proposing a generic algorithm that can cope
with any intent estimation algorithm, e.g., [6]-[8]. We aim
at designing a driver-adaptive supervisor (blue element of
Fig. 1). In practice, such a supervisor can be implemented
in two fundamentally different frameworks. In @ntralized

Index Terms—Supervisory control, safety verification algo-
rithms, collision avoidance, traffic coordination, intersection
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Figure 1. Supervisory control structure of human-drivehides.
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optimal approximation of the drivers’ intent if the desired
input violates safety conditions. To determine the set & sa
control actions, we exploit the notion of maximal contrdlle
invariant set (MCIS). Even if our approach is aimed at human- &ED
driven vehicles, it can be coupled with existing algorithms
for autonomous vehicles [19]-[24], in a multi-layer cottro
structure. In this case, our algorithm would ensure thetgafe
of the trajectories generated by a higher level decisiotesys
The contributions of this work are the following. First, Wesjgure 2. Illustration of the considered scenario. Sevémaman-driven
elaborate on a novel optimal conflict resolution techniqus fi vehicles approach an intersection following pre-definethgpa
presented in [25] that is optimal with respect to the human’s
desired actions. Second, we propose an optimal supervisor

coupled with a state predictor robust to input uncertasitieys generality, and for simplifying the notation, we assume

easily extendable to also handle modelling and measuremg: vehicles have homogeneous input sffs such that

uncertainties. Thlrd,_we _dlscuss her_e approximate S“"E‘t'oumm = Wjmin = Umin AN Ui mae = Uj.maz = Umaa, Vi, -
that guarantee real-time implementation of the proposéd so

tion for set of more than eight vehicles. Finally, we val@atir In this work, we assume that the path of each vehide

theoretical framework not only on simulated but also on relo\n, and that vehicles do not change paths/lanes when they
data. Note that, though building on our previous work [28], agngage in the intersection. The intersection can be modeled
the theoretical machinery (definitions, lemmas, theorem&s 55 an intervala;, b;) along each path, see Fig. 2. Note that
novel due to the robust state prediction and the definitichef o interval(a;, b;) should be defined in such a way that the
MCIS given later. The paper is organized as follows. Sedliongjze of vehicles and the intersection itself are accounted f
describes the dynamic model, and Section Il the problept B - R” denote the (time-invarianBad Set including
formulation. The different steps of our approach are presen 5 configurations corresponding to a side-collisioa, all y;
subsequently: the state prediction in Section IV; safetyt Veyng ., such thaty(t) € (a;,b;) andy; () € (a;,b;) at the
ification in Section V; and control synthesis in Section Vigame instant: ’ ’ 7

The properties of our supervisor algorithm are discussed in

Section VII, simulations and experimental results given if := {y € R" : y; € (a;,b:;) Ay; € (a;,b;),for somei # j}.
Section VIII, and our conclusions provided in Section IX.

The supervisor that we present later on is implemented as a
discrete-time algorithm. To keep notation simple, we coesi
Il. SYSTEM DEFINITION in the rest of the paper thatis the current time when a step
Consider the system of the supervisor is executed. Finally, we also introduce th

following definition.
x =f(x,u), y = h(x), (1) g

wherex € X C R™ is the state ofr vehicles moving om
different paths withr-order dynamicsy € R™ is the vector
of the positions of the vehicles along their paths anis a
vector of control inputs. The system is given by the parall

Definition 1 (Notation convention) We denote

« u,, the measurement of brake and acceleration input for
all drivers, taken at time zero.

é‘Pd from time zero onwards,

composition ofn different systems: . :jld_es(t) the unknown, future desired control signal for all
rivers;
Ti = fi(wi, wi), yi = hi(w:), (2) '« upy,(t) ahypothesis on the future behavior of the drivers,

i.e., a hypothesis on.s(t).

describing the longitudinal dynamics of each vehicle. We toas () @ cONstant input signal, equal ta,,.

assume that system (1) has unique solutions and that thé
individual systems (2) are monotone [26], wilR, (the
nonnegative real line) as the positivity coneygf This yields Ill. PROBLEM STATEMENT
. . We assume that humans are driving each car, and that a
(2:(0), 2:(0)) = (;(0), £3(0)), wi = u; supervisor is in charge of verifying the safety of human-
. ) decided control inputs [18], [27]. In the literature, thébsat
(i, 1) of X of all initial conditions admitting a safe input is known as
In words, this means that the more a vehicle accelerates, the Maximal Controlled Invariant Set (MCIS), see [28]. Defin
faster it will move. Throughout the paper;, y; andu; will  [x!,x"] := {x : x! < x < x"}, wherex! and x" represent
be used indifferently to denote vectors (as above) and signa lower and upper bound on the state vector, respectively.
the correct interpretation will be clear from the contexiheT Formally, the MCIS is given as follows.

?/nalld?ssi orflglsanir}é (?ént:)rtneed:(’ﬁ startlggarf]:jorrzgco an()d \1’_\';:2 Definition 2. The set[x’,x"] C X belongs to the MCIS if
fuﬁction%l S 1z;,ces of the input ,ST,:& t a%’d ,ué;;od and and only if there existsi € i/ such thaty (t, u,xo) ¢ B for
P put signal(t) u : all t > 0 and for all xo € [x!,x"].

U C R”, respectively, and the skt is compact, with a unique
Maximuma; e and minimumu; ,.q:,. We also assume that Note that the definition above still holds when the set of
¥; is bounded to the non-negative intervl, ;4] for states is a singleton. As long as the system’s state remains
all ¢ and thatlim;_,oo 9 (¢, Wimaez) = Yi,maz- Without loss within the MCIS, there exists an input that avoids collision

Y <

(xf, 4%).

[ 7
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Therefore, the role of the supervisor is to ensure that thie st Here, we relax the assumptions on the driver’s behavior of
never leaves the MCIS, while modifying the input selected 5], where the driver's input was considered to be a fixed,

the drivers as little as possible. constant signal: equations (4) and (5) consider a contpmltin
Let u: Ry — R" be the input returned by the supervisorequal to u,,;, and u,,., for ¢ € [0, 7], respectively, and
The Supervisor Problentan be posed as: Unyp € [Wmin, Umaz] fOr ¢ € (7,60]. This is important to

guarantee that the supervisor proposed later is non-biggki
a property that would not be satisfied if the state predistion
ere solely based onyy,(1).

Problem 1 (Supervisor Problem)Given the current state
X0, the input signaha,,..s and a cost function/ (u,,eqs, 1),
return u such that the future state will not enter the bad set

B, and so as to minimizé (ueqs, u).
) V. SAFETY VERIFICATION
Here, asking for the future state not to enter the badBset

readsf(xo,u) € Tx MCIS V¢, where7x MCIS denotes the III? ?r?e[i::]) guzi'raztee saferty;]::olIilslonsfs?ouldmbe "’;VO.'dEdrf
tangent conet x to the MCIS and corresponds to the set o uture imes. fience, guaranteeing safety comes 1o #igsu

all vectorsv such that: that Fhe set of (infinite horlzgn) control actions a\_/0|d|rig a
< — x v conflicts is non-empty. Consider a prediction horizbrand
b — an expected control signaly,,(t). We formally define the

lim —_— = .
xk—xx,x€MCIS [|xg, — || v Verification Problem (VP) as follows.

The above limit corresponds to the set of infinitesimal Pep e .
. N . roblem 2 (Verification Problem (VP)) Given the set of
turbations(x; — x) such thatx; € MCIS. The supervisor state estimation& (4, upy,), x" (6, uy,)], determine if there

routine is then c_onjposed of the.foIIOW|_ng sequential Steps'exists an input signak which guarantees that(¢, u, xo) ¢ B
1) State prediction over a horizorf given uyy,. Jor all ¢ >0 and for all xo € [x!(8, unyp), X" (6, wnyp ).
2) Safety verification, ensuring that the set of predicte - PR PP

states can be reached without collisions using,, and In other words, we need to verify that:
that there exists an input that avoids collisions for all . h
t > 0, for all states in the set. [ (6, unyp), (0, unyp)] € MCIS. ©6)

3) Control synthesis when the safety verification fails. To verify the above condition, we exploit the representatio
The above supervisor is implemented as a discrete-time algd the constraint (6) in terms of a scheduling problem, fol-
rithm, with a fixed time stepping (larger than the worst caselowing the idea introduced in [13]. We briefly introduce this
computational time). An illustration of this principle isvgn equivalence in the following subsection.
in Fig. 3. We will analyse now the three steps separately.

IV. STATE PREDICTION é.rolslqeﬂvalence between Verification Problem and Scheduling

Even if the driver’s high-level objectivesd.g, go straight
or turn at the intersection) are assumed to be knevgriori Let y'(t,u) = h(x'(t,u)) and y"(t,u) = h(x"(t,u)).
inferred by a high-level intent identification algorithm]je D€fine for each agsnt with ;(0) < a; the quantities
[29], the supervisor can only measure the current brake afig = min{t > 0 y;'(t, Umas) > a;}, Di := min{t > 0
acceleration inputy,,, (see Definition 1). In the impossibility ¥ (¢ 4min) > ai}. These wo quantities are, respectively, the
of exactly knowing the drivers’ future desired control sign Minimum and maximum time at whicly'(t,u;) reaches the
w4, safety systems aiming to optimize a car's responddersection (and 0 if; (t,ui) > a;). Notice thatR; is always
aroundu,.. should therefore incorporate a suitable inferendiite; since by assumptiotim; oo yi(, ti,maz) = Yimaz,
algorithm for the signaliz.. In this paper, we do not focus "While Di can in general be infinite 'ff‘iwfni,'y can bring agent
on the way to infer a hypothesis, ,, but we define our state [0 @ Stop before;. For each agentwith y;'(0) = @i, givena
predictor so that the resulting architecture correctlykgdor '€l numbet;, dff'”epi (T3) = ming, ey, {t : y;(t, ui) = bi,
any possible hypothesis. with constralntlyi{(t,u,-) < a YVt < T If tlhe cc;Lnstralnt

Let  be the prediction horizon an,, (¢) € [Wmin, Upmaz] 2O be satisfied, sef;(T;) := oo. l” [y:(0),y;(0)] N
representany hypothesis on the driver's behavior. Recall®:bi) # 0 define Pi(Ti) := min{t : y;(t, uimas) = bi},
that 0 is considered to be the current time at which the
supervisor problem is solved. The lower- and upper-bounds

of the estimated trajectory are defined as follows: {!}
U= U fort €0, 7 Override the
x! (t, upyp) := x(t,u,xq) St. { B e ¢ [ ’9] / driver’s input
u = uhyp(f/) orte (T, ] A —> B —» <Projected state in
(4 Measure Project state
u = Umaz fort¢ e [O, T] current state information
h - Yo
X (t, uhyp) = X(t, u, X()) st. foward in time s Use driver’s

u=up,(t) forte (T,(g]) input

See Fig. 4 for an illustration. The following lemma holds asigure 3. lllustration of the working principle of the progel supervisory

a consequence of monotonicity. control. Given the estimated driver intent and the curreeasarement of
the system’s state, a state prediction over a predefineddmis performed.

Lemma 1. Given the current state measuremen, For the resulting state predictions, the verification peablis solved: if the

Xl(t,uhyp) < x(t,u, Xo) < Xh(t,uhyp) forall 0 <t <7 verification succeeds, the driver’s input is returned; otlee, a safe control

input needs to be computed.
and for all u(t) € [umin, Wmaz)-
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State predicton R Algorithm 1 [T,answer] = ExactVPxX, u,,)

\ e X0 <« X

Ii'(e!ull.\'ld uh,yp(t) <~ f(um) Vt 2 0
_e forall ¢ €{1,...,n} do
s given [x'(0, unyp), x"(0, uny,)] calculateR; and D;
.’ N . end for
Measured state L LeEZZIIiooo---- ° for all permutations of1,...,n} do
r- T1 < R1
forie{2,...,n} do
T + maX(Pi_l(Ti_l), Rl)
Previous inputs U Unnens end for
L S if T, <D, forallie{l,...,n}then
------------ return {T, yes
end if

end for
return {(, no}

Past 0 T Future

Figure 4. Notation convention: illustration according tefition 1.

the constant signal,..s(t), equal tou,, for all ¢ > 0. This

choice is suitable for the chosen numerical method given in

the sequel, which requests a constant signal, and apprtesma

well the drivers’ intent as long as is small with respect to

the drivers’ input rate of change. We will therefore define th

st function as the infinity norm of the difference between
e supervisor output and,,cs:

and if y}(0) > b; define P;(T;) := 0. P,(T;) is the earliest
time thaty! can reach;, if y* does not pass; beforeT;.

guantities, we can write the Verification Problem as a sched
ing problem where the intersection represents the resptivee
agents represent the job to be assigned to the resource, and J(Wmeas, 1) := ||0 — Wneas || co- 9)
the time spent by each agent in the intersection is the len

of the job to be executed. The following result holds. %y using the infinity norm, we minimize the worst case

difference between:; and u,,.qs,; for all vehicles. We can

Theorem 1. The interval[x'(0, upy,), x"(0, upy,)] € MCIS  then formalize the following optimization problem:

if and only if there exists a scheduk= (71,...,7;,) € R min J(u w)

such that for alli: uey meas? (10)
R, <T <D, e subject to  x(6,u,xg) € MCIS,

where the optimization constraint is expressed as theisolut
T, 2 T; = T; > P;(T}). (8) of the Verification Problem, and can be addressed using the

The proof follows directly from [15], and will be omitted {€Chniques discussed in [13], [18], which exploit a similar

here. In accordance with the results of Theorem 1, the spiuti€duivalence to the one presented in Section V-A. In the seque
e provide a numerical strategy to solve problem (10).

to (6) can be found using Algorithm 1. Given the set of initial"
conditions[x' (6, up,), x" (0, up,,)], Algorithm 1 calculates Remark 1. Note that this approach differs from previous

R = [Ry,...,R,] andD = [Dy,..., Dy] and retrieves a works in the domain, which ignore in their design any opti-
schedule (if one exists) by testing all the possible orderimality arguments. In the non-optimized implementatiorhef t
permutations of. agents. Supervisor Problem presented in [13], [15]-[18], no attetmp

There is also an extension of the scheduling problem defingddone to approximate the drivers’ intent when the drivers’

by (7) and (8) where jobs cannot be executed during specifigghut is overridden. Hence, this is equivalent to solv{ig)
time intervals. These are known asserted idle timegqiit), with the cost function

see [16]. This particular type of scheduling problem will .
be ‘necessary Iat_er for the derivation of a multi-objective T (Uges, 1) i= 0! Umeas = W, (11)
optimization algorithm. 1if Wpeqs # 0.

This corresponds to returning,,...s whenever this maintains
VI. CONTROL SYNTHESIS the state within the MCIS, and to returning an arbitrary itpu

When safety verification fails (according to (6)), the lash such thatx(6,u,x,) € MCIS otherwise. Though effective,

stage of the supervisor routine requires the synthesis ofirés can lead to unwanted or unnecessarily aggressive decel

safe control signal minimizing a given performance metrigrations/accelerations.

Before introducing the proposed optimization algorithet, |

us discuss the optimization objectives and the implemiemtat

aspects of the supervisor algorithm. The supervisor reutih- Single objective control design

is implemented with a time stepping, meaning that the Let uyounq be an upper bound to (9). Problem (10) can then

generated output is the optimal input sigmafor the interval be reformulated as:

[0, 7], i.e., until the next instant when the supervisor routine

! . . . . min Ubound
is performed. Since the only information available from the uey
drivers is the current input,,, a sensible objective is to subject 10 [[u — Wneas|loo < Upound (12)

minimize the difference between the supervisor correciuch x(6,u,x%0) € MCIS.
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Clearly, problems (10) and (12) are equivalent: the sotutib Remark 2. Algorithm 2 inherits the complexity of the verifi-
(12) minimizinguyewuna COrresponds to the optimal solution ofcation stepxg € MCIS(upound), Since the bisection loop is
(10). However, the search space of (12) is a functional spac¢¥1). Therefore, the complexity of optimally solving (10) is
To simplify the optimization problem, define MCl&,....4) 8s comparable to that of solving the Verification Problem.

the set of all states € X satisfying the Verification Problem

under the constraint: Remark 3. The optimality of problen{12) is not dependent
on uyy,. A less accurate hypothesis,,, will only increase

[a(t) = meas (t)lloo < ubouna, for ¢ & [0,6]. (13) " the number of interventions (i.e., the total time the suigerv

We can then write: overrides the driver’s input). Once overriding, the optzation
) procedure is independent af,,,, and it is shown here to be
uhoifféR . Ubound (14) Pareto optimal. Recall that safety is always guaranteedtdue

subject o xo € MCIS(upound), the robust state prediction fare [0, 7].

where the search space is now the non-negative real line. The

following result holds. B. Multi objective control design
Lemma 2. The optimal cost 0f(12) is equal to the optimal  Rewrite problem (10) as the following multi-objective op-
cost of (14). timization problem:
Proof. Let w,* ., andu},, , represent the optimal costs of min J1 (Umeas.1,u1)
(12) and (14), respectively. The following two argumentklho ”1§U1 ’
e uf, >t If xg € MCIS(uf,,, ), then there nin J2(Umeas 2, u2)
exists @ such that| i —uges || oo < uj,,q fOrallt € [0, 6] . (15)
andx(6,1,xg) € MCIS. Take nowu = @ for ¢ € [0, 6] :
andu = uges for t > 6. This gives||u — uges||oo < min Jn (Umeas.n, tn)
Uypuna @NAx(0,u,x0) € MCIS. Thus, (@, uj,,,,4) iS @ Un Eldn '
feasible solution for (12). subject to  x(6,u,x¢) € MCIS.
* Uppund = Upouna - If x(0,u,%0) € MCIS and|ju — e introduce the following definition.

Wes||oo < Uy unar thenxy € MCIS(uy,,..,). Therefore,
Ups na 1S @ feasible solution for (14).

Because of the previous two statements,, ., = 45 ,q- O

Definition 3. An admissible solutiona of (15) is called
weak Pareto optimal if there exists no admissible solution
u’ such that J;(umeas,i> ;) < Ji(Umeas,i,u;) for all i;

The optimal cost:],,,. , of (12) is the smallest value of the@mong the weak Pareto optimal solutionsjs called Pareto
cost function (9) for which all agents can avoid collisioie OPtimal if there exists no admissible solutier} 7 u such
optimal solutionu?, . to (14) can be numerically computedthat: () Ji(umeas,i,u;) < Ji(tmeas,i;ui) for all i and
using the bisection method (see Algorithm 2), and an optim@) i(tmeas.i,u;) < Ji(Umeasi, u;) for at least onei. An
solution of (12) retrieved by selecting an inputsatisfying illustration is presented in Fig. 5.

the constraints of (12) folbound = e WaYS 10 CONSITUCt ¢ fo]lows from Definition 3 that Pareto optimal solutionsar
such an input are explained in [13], for example. not comparable in the preorder induced by (1%), all Pareto

Note that there can be multiple optimal solutionswith  gptimal solutions are equally good. Considering Definit&n
the same cost;,,,.,; ah emergency manoeuvre necessary {ge introduce our next result.

avoid a collision between two vehicles may set a largg,,, ;. _ )
hindering the optimization of the supervisor correction o Lemma 3. All optimal solutions of (10) are weak Pareto
third vehicle unaffected by the collision. This is partiagy Optimal for (15).

Clear if‘ the results prgsented in.Section VIII-A. In otherde Proof. We prove this result by contradiction. Assume that
there is a set of optimal solutions to problem (10), and trfﬁere is an optimal solution of (10) that is not Pareto optimal

single-agent cost funCtions (umeas.i, ui) induce a preorder ¢, 15) “This means that there exists a solutiohof (15)
on this set. In the next section, we explore the solutioncstrug, -, that.J; (u ) < Ji(u ;) for all i. Then
) meas,ty Yy ) meas,ty Y1 .

ture of (12) in terms of Pareto optimality. We formulate thgj(u ) < J(Wneas,u) in (10), which contradicts the
Supervisor Problem as a multi-objective optimization fieab .o meas '
) X . ptimality of u. O
and show how to retrieve an optimal solution.
By the above lemma, any optimal solution of (10) is at
least weak Pareto optimal. Nevertheless, our ultimate igdal
select, among all optimal solutions, one that is Paretamogti
To find the optimal solution to (15), we will exploitin the se-

Algorithm 2 Numerical solution of (14)

1: Initialise U = maXi(ui,rnaac — ui,min)v L=0
2: while U — L > thresholddo

3 Upoung = (U +L)/2 guel the equivalence described in SectionV-A. Recall nosv th
4:  if xo € MCIS(upouna) then definitions of the quantitie®;, D; and P; and note that they

g elseU = Ybound are all dependent on the ddt. In the presence of constraint
7 L = Upound (13), such quantities become a function of the constraining
g- ende\r,]\,?]iife quantity Upound- HeENCE, We deﬁneRi(Ubound)aDi(“bound)

and P;(T;, upouna) @s in Theorem 1, with the additional
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Jo(Umeas,2suz) | D @) Definition 5 (Tight set) Consider a scheduleT €
O O SP(upound, IIT). We say that an ordered set of jobs and
® O @) inserted idle times € {1,...,m} is tight if the following
conditions are satisfied: (i) all jobs and iit's except the
O O first start exactly after the previous job or iit is done, j.e.
(] o Ti = Pi_1(Ti-1), or Tj = Bi—1, or oy = Pi_1(Tj_1), or
a; = Bi_1; (i) if the first element is a job it starts exactly at
O non-optimal solution ® O its release time, i.e., aR;; (iii) if the last element is a job, it
starts exactly at its deadlin®,,,.

@ Pareto optimal solution

@ weak Pareto optimal solution

Jl(umeas,lsul)

In words, a tight set is a set of jobs and iit's whose scheduled
starting time cannot be changed without changing the order i
which they are executed. Note that a single job with equal
release time and deadline is a minimal example of a tight set,
constraint||u(t) — Wmeas(t)|loo < Upound for ¢ € [0,6]. We and that an it is by definition always a minimal tight set.
introduce the following definition. Given a tight set for a schedul® € SP(upouna, IIT), let
constrainedobs denote the subset of jobs which do not satisfy
constraints (7), (8), or (16) ifiyoung IS reduced, unless we

gange the order with which they are scheduledIinLet

e 5 (Ubound) @nd D;(upound) denote the scheduling quantities
of problem SP(upound) With dependence Onupound. The
following definition is introduced.

Figure 5. lllustration of Pareto and weak-Pareto solutiagsording to Def.3.

Definition 4 (Scheduling Problems)Letting SP denote a
scheduling problem defined l§y) and (8), we write

o SP(upound) When the scheduling quantities are comput
under the constrain{13).

o SP(u1 bound; - - - » Un,bound) When the constrain{13) is
different for different agents.

e« T € SP(ubouna) if T is a feasible schedule of Definition 6 (Constrained and constraining jobg) tight job:

SP(ubound)- is constrainedn a scheduléT for a problemSP (upound, IIT)
o SP(L,upouna) When a restriction ofSP(upeuna) to a if i) itis followed by another tight jo and P; (75, uy,,,,.4) >
subsetL of the agentq1,...,n} is considered. T; for any uy,,,.; < Ubound, OF ii) it is followed by an IIT
o SP(upound, I1T) when an additional constraint: [o, B] and P;(T;, up,,,q) > o forany ... < upound, OF

L i) T; > Di(uppng) fOr anyu, .0 < tbound-
(T3, Pi(T3)) N (o, Bj) =0, Vi, j#i.  (16) )A tight jo(b e ccsirzstraininygifbiot is ot constrained and it is
is added taSP (upouna), given a set of inserted idle timesPreceded by a constrained job in the same set of tight jobs.
NT:= {[a1, B1], [o2, Ba], - - .} Hence, one can think of the constraining jobs for a schedule
o SP(L, ubound, II'T) when constraint(16) is added t0 T e SP(upounq, IIT) as those jobs which limit the minimum
SP(L, ubound), given a set of inserted idle times I8 value upoung can take while allowingT to be adapted to
{lax, B1], [z, Ba), . . .} be feasible ISP (uyouna, IIT), without changing the relative

Using this new notation and Theorem 1, problem (14) c&tfder of jobs and iits. This leads us to the concept of a
be rewritten as constraint-minimal schedulelefined as follows.

min Ubound Definition 7 (Constraint-minimal schedule)Consider a
Ubound ER (17) scheduleT € SP. The schedule is constraint-minimal if no
subject to 3T : T € SP(tpound)- other schedulel” # T, TV € SP has a set of constrained

The following holds jobs that is a strict subset of that af.
Lemma 4. Consider the quantities?;, D, and P;(T;) of
SP(upound), and R;, D; and P/(T;) of SP(uy,,,,) With
UWpouna < Ubound- We have thalR; < R!, Pi(T;) < P/(T;),

An illustrative example of constrained/constraining jeiosl

constraint-minimal schedules is given in Fig. 6.
From Lemma 4, it follows that;, ., defines the subset of

D L;LdD, jobs that verify the scheduling constraints exadtky, would

= e not be schedulable for a smalles,..q values. Hencey;, . ...
Proof. The property follows from the fact th&P (uy..nq) is COrresponds to the worst case scenario imposed by this set of
a relaxation ofSP(u},,,,). Note that changing the value ofjobs, as the remaining jobs could still be schedulable faelo
Upound IS €Quivalent to changing the bounds of the feasibkglues ofu;, . ,. The proposed solution to find an optimal
set of inputsl;. Hence,U;(uj,,,...) C Ui(ubouna) Whenever value ofu; .., . is based in the following construction.
Upouna < Ubound, @nd sinceR;, D} and P/(T;) are defined for o aqure 1. (Reduction step)

the extremal points () , the previous result holds. .
P 0: (40n0) P « Consider a schedul® € SP(u;,,,.., IIT), whereu;,, ..

= is the optimal cost of(12) with constraint 3 T
It follows from the previous result that by decreasing the T € SP(upound, IIT), and assume thal is constraint-
value of upoyung ONe tightens the constraints 8P (upound)- minimal.
As a consequence, we can interpret the optimal cost of (12 Define a set” of constrained jobs and of jobs that are
as the valueu; ., for which a subset of jobs verifies the not constrained inT for SP(uj,,.4, IIT), and define a

constraints exactly, i.e., would not be schedulable for allem new setllT’ := IIT U {[T;, P;(T;)]Vi € C}.
value ofuyounqd. Based on this interpretation, we introduce the « Call «;® . the optimal cost of(14) with constraint

following definition. 3T : T € SP(L, upound, IIT).
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. R 7 o Algorithm 3 [u}, ... T*] = MultiObjOpt(x, u,,)
eh.
= R T r D, p, 1 xp ¢ x
2 s S [ 2 Upeas(t) + um V>0
,.5 L e s i Isr:eT/?“SEOL ={1,...,n} IT=0, U* = 0

Ts [ R, D, . =
o Vehd - ~ | 1:] | 5: while L is nonempty oiU* > 0 do
z Veh.5 | :[! : [] Loose jobs 6: k=k+1

Ts 7 Optimization step: Solve problem (17)min upoyund
R, -Jl [ 8 subject to 3T : T € SP(L, upound, [IT)
Vet T B Tight jobs 9: and callU* its optimal cost
O ven: [R: D: " 10:  Selection step:Select a schedul@* € SP(L,U*, IIT)
= ’ R, ) —|»: 11: that is constraint-minimal
g Vs R, Ca— 12: Reduction step:
=  Vehd | :] | 13: for all jobsi € L that are constrained faf* do
N T [ T 14: removei from L
Veh. 5 H
N Y 15: add the interva|T;, P;(T;)] to IT
) 16: Setu) ;= U T; =T

Figure 6. lllustration of two feasible schedules &P (u;,, ., IIT). Jobs ig ende\r,:,?“fgr

1 and 2 are constrained in both schedules, while job 5 is constrgitm 7" . * * * *
and not tight inT”. ScheduleT” is then the constraint-minimal between the 19: retum (ufoynd 10+ Yhound,n): T15- -5 T7)
two.

problemSP(Ji*, ..., J*) with J/* < J* for at least one,
« Finally, consider  the scheduling problemthereforeJ, ..., J is a Pareto optimal solution. O

1% 1% 1% o
SP(Upgund,12 - -+ Ubgund n IIT), WhETe w5, ; = Remark 4. The complexity of Algorithm 3 is defined by the

* Y3 1% R 3
Upound 1f # € €, ANty 5 = Upoung 1T 7 € L. complexity of the optimization step, which in turn is deter-

In other words, we suggest to identify the subset of coflined by the complexity of the test at line 4 in Algorithm 2.
strained jobs verifying the scheduling constraints eyaotth ~ The outcome of the multi-objective optimization algorithm

Ujounq» @Nd remove them from the optimization problem (123nq the advantages with respect to the single-objective-pro
by reserving their execution time as iit. This lead us to them are discussed later in Section VIII-A, where some simu-

following result. lation examples are presented.

Lemma 5. The set of constrained jobs inT for

SP(u},,na- IIT) is a subset of the set of constrained VIl. SUPERVISORY CONTROL

jobs Inany T € SP (Uygund,1s - - - » Ybound,ns UT) fOr 0 this section, we present a supervisor algorithm thateslv
SP(Ubpund, 1> - - - » Upgund,n> L) Problem 1, by sequentially performing the state predigtion

Proof. This is a consequence of selecting a constraiffe Safety verification and the control synthesis stages. Th
minimal scheduleT. First of all, notice that (i)u!* ~ supervisor overrides the driver’s input signal if and orflhie

W by Lemma 4 and siné:mg* s coméﬁﬁ&lﬂ by safety verification stage fails, i.e., whenever

removing from SP all constraining jobs, and that (i) Bucll st y(t,uxo)n B =0, ¥ >0,

for any T € SP(upynais--- > Upouna.n UT), T €

SP(u},una: 1IT). The only way that a job which is con- Vxo € [Xl(eauhyp)vxh(97u}zyp)]a
strained inT for SP(uj,,, 1IT) can be not constrained . e 4 .
in T for SP(ug;und,h(')' i IIT). s if its con- for all the agents for which y;(0) < b;. Recall thatuy,,, is

defined in Definition 1. In such cases, the overriding signal

N H -7 H 1 R/
straining jobj is scheduled at a different time " than Uy IS given as

in T. However, sinceT is constraint-minimal, schedul-
ing j at any different time would generate a new con-u,, ;:= arg inf {¢t>0:y! (¢, u;) > b;}
strained jobk in T” for SP(u;,,..q, 1IT). We have defined ui€ls . .
Uporundgs = Yhound < Ubouna» therefore this would imply with constraints: HZLE; U;ne;s,i“fogi Zbag'*nd,i
T G SP (U1 s U TIT), 0 v (b wa) < @i fu8)
By iterating the reasoning of Procedure 1, it is then possioVnere (u;,,,q.:, T;") are given by Algorithm 3. In words, the
to retrieve a Pareto optimal solution to problem (15). Thgpervisor defines, when needed, an inpy.i(t) allowing
structure of the proposed multi-objective optimizatiomge- 2agdenti to exit the intersection no later than= P;(77) or to

dure is presented in Algorithm 3, and leads to the next resi@fiter it beforel", while satisfying input constraintg;,, ., ;-
) . ) _ The structure of the proposed supervisor algorithm is giaen
Theorem 2. Algorithm 3 provides a Pareto optimal solutionalgorithm 4. The following result holds.

to (15).
(13) Theorem 3. Assume thak, € MCIS. Then, Algorithm 4i)

Proof. The algorithm is implementing the process describegblves the Supervisor Problem afig) is nonblocking.
before Lemma 5, and returns a schediile and a solution

to (15) in terms of a set of optimal cost, ..., J*. From Proof.
Lemma 5, we can conclude that all jobs for the schedules To prove (i), consider that Algorithm 4 returng,.; as
T* € SP(Jy,...,J}) are constrained, or havé® = 0. In long as a schedule exists satisfying Theorem.€., as

both cases, it is not possible to find a feasible schedule for a long as[y'(t, uny,), ¥ (t, unyp)] N B = 0, V¢t > 0. If
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that is not the case, condition (6) is not satisfied ar@P™edendth 35 the scheduling problem with jobs of equal
an (override) inputu,,; is returned, which is defined length 6,,.. (Upound)- By substituting SP by Sfped-endth gt
according to Algorithm 3. As such input is safe and hd@es 8 and 10 of Algorithm 3, we can exploit the polynomial-
been derived s.t. it minimize&(u,,.qs, u), this concludes time scheduling algorithm proposed in [32] (and reported as
the proof. algorithm POLYNOMIAL TIME in [13]) to compute an optimal

o Let u be the supervisor output at time = 0. schedule, i.e., an optimal job order. Note that the solution
From Lemma 1, it follows thatx(r,u,x9) € found is a Pareto optimal solution among all schedules with
[x! (7, Upyp), X" (7, unyp)], ¥V u. As shown before, the job lengthss,,q. (usouna). This optimal order is then fixed and
proposed algorithm correctly solves the Supervisor Probsed in one more run of Algorithm 3 with Sped-order
lem, which means thally! (¢, unyp), y" (t, upy,)] N B = In the next section, we will present simulation results
¢, vt > 0. Hence, this yields thaty x(r) € highlighting the advantages of this approximate algorithm
[x! (7, Upyp), X" (7, unyp)], there exists at least a s.t.
ly'(t,@),y"(t,a)) N B = 0, vt > 7, whered is the VIII. RESULTS
supervisor output at time= 7. Therefore, the admissible We consider in the sequel a multi-vehicle scenario as
set of the supervisor at time is non-empty,i.e, the depicted in Fig. 2. We assume that all agents are moving
supervisor is non-blocking. This concludes the proof. over different paths and that their longitudinal dynamios a

] described by double integrator dynamics given by:

Remark 5. The previous results can be extended in order Ei(t) = ui(t), vi(t) = wi(t), (19)

to also cope with measurement noise. Using an approagheres; c [0m/s, 17m/s] andu; € [—~5m/s% 3m/s?], Vi.
similar to [15], the proposed algorithm can be reformulateyote that a linear model has been chosen here for the sake
based on the computation of the Maximal Robust Controlledl simplicity. Nevertheless, the results of this paper alstd
Invariant Set,i.e., the largest set of states of inputs thator non-linear dynamical models that satisfy the monotityic
avoids conflicts for all positive times and for any admissiblyroperties mentioned in Section Ill. With the exception of
disturbance. By leveraging the monotonicity propertiesl arFig. 8 and 11, each subfigure is composed of two panels. In
the uniform continuity of the system’s flow, one can derivetRe top panel, the intersection is represented by a greyarak,

robust supervisor algorithm. the position trajectories of the different vehicles are droc
In the lower paneln andu,,..s are represented by solid and
A. Approximate supervisor dotted lines, respectively. The following results wereaitxd

In the previous section, we provided an algorithm th&" @2.8 GHz, 16 Gb RAM laptop with Windowsl0, using
determines exactly the membership in the MCIS accordir%atlab 2016b.
to (6). But this verification is often a computationally diffiit . . Co oo
problem, and has been proved to be NP-hard for some collisfdn Single-objective vs multi-objective optimization
avoidance problems of practical interest [13], [31]. A nanb We analyse in this section the performances of the single-
of exact algorithms have been proposed, whose applicajionaﬂd multi-objective algorithms. For this scenario, thdiahi
systems with more than a few agents is not practical [L0];-[1Zonditions of the system are = [(0,10), (24, 10), (32, 10)]
[14]. Some of these results are applicable only to the twenag and the prediction horizon i9 = 5s. To simplify the
conflict resolution problem, and the others have exponkntiaterpretation of the results, we assume that the driveralof
complexity in the size of the state space. vehicles always request an input equalig, = umeas = 0.5
Nevertheless, approximations exist with polynomiall{horizontal dotted line in the bottom panels of Fig. 7), aimatt
bounded running time. An obvious way to reduce the corthe intersection corresponds to the interjé, 75]m along all
putation time of Algorithm 3 to polynomial is to solve avehicles’ path.
scheduling problem Sfped-order with a pre-determined job  Fig. 7(a) shows the result of the single-objective opti-
order instead of SP at lines 8 and 10 of Algorithm 3. Thighization problem (14), for which the optimal solution is
however, does not guarantee in general an error bound. @g,,,s = 0.53. One can see that, to avoid a collision between
choose a job order with a guaranteed error bound we can pfee blue (solid line) and green (dashed line) vehicle, the
process jobs using the ideas presented in [13], [15], [18]: wptimal control policy forces all agents to deviate fromithe
define a time, oz (Usound), Which is long enough so that anydesired control input. All vehicles apply a control signaieve
agent can cross the intervl,, b;) in at mosté,,az (Upound), the maximum difference with respectg,.,s corresponds to

and allocate this fixed amount of time to each agent. Defifg,..q.» S€€ the zoom on the lower image of Fig. 7(a). Note,
however, that the red vehicle (dotted line) is not involved i
an immediate collision with the remaining vehicles and ¢her

Algorithm 4 Supervisorg, u,,) is no reason to alter its trajectory.
L Upyp(t) < f(um) VE>0 Fig. 7(b) shows the result of the multi-objective optimiaat
2! Umeas(t) ¢ um VYt >0 problem (15). As expected, the performance of the opti-
i: i{fgnicfgﬁiﬁzsﬁﬁpré“”“hy*’) mization algorithm improves. More precisely, only the blue
5 leave thc)a/ drivers do whatever they wareturn (solid line) and green (dashed. line) vehiclgs’ trajecm@e
6 else corrected, allowing the red vehicle (dotted line) to condrits
7 {ubounas T} MUltiObjOPpt (X0, Umeas) desired trajectory. Without needing to correct unnecdgshe
gi dO};ernde the driver input using.,; defined in (18)return  red vehicle, the multi-objective optimization algoriths) ias
cendl

expected, less restrictive.
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Figure 7. Single-objective vs multi-objective optimizati (a) single- E
objective; (b) multi-objective optimization with = 5 andupyp = Umeas = x
0.5 (black dotted line). .
60 L.t .
........ ! . t[s]
0 5 10 15
B. Naturalistic data validation Figure 8. Experimental setup for data collection: (a) tiason of the

. .., _intersection scenario; (b) naturalistic trajectories bé ttwo vehicles; (c)
We validate now the performances of our control algorithmgrmalized trajectories, where the intersection is setathe origin with a

with naturalistic data, using two Volvo S60 T6 vehicles. Wiength equal to twice the size of the vehicles. X and Y arellooardinates.

considered an intersection scenario as illustrated in &g),

and performed multiple tests in velocity ranges going from
20 km/h to 40 km/h. For positioning, each vehicle was

@ = [

equipped with inertial measurement and DGPS modules OXTS
RT2002. Vehicles were used to generate realistic trajestor-2o
at intersections, which were later fed as user—desiredt:ianpﬂ_40
to our supervisor algorithm (i.e., there is no online sujsenv
controlling the vehicles). The GPS-based trajectoriespage

600 .

sented in Fig. 8(b). We defined the intersection as an interva
centered around coordinafleon each path. The length of the
each car is4.62m and the intersection width i$0m. The o
distanced travelled by each vehicle along its own path isrgiv £
in Fig. 8(c). ’
In Fig. 9, we used the vehicle model (19) with the driver’s -

ts]

input u,, being equal to the second derivative of the trajec- o 5 - =0 5

tories of Fig. 8(c) and of an additional third trajectory. We_ ) ) ) ]
-igure 9. Supervisor Algorithm 4 applied to a real set of deith 7 = 0.2s

assume thati,,, is a constant signal equal to the last meag

10

t]s]

15

nd# = 1s: (a) a collision-free case; (b) a collision case. In the diott

surementu,,. In other wordsusy, = Umeas, S€€ DEfiNition 1. panels, the dotted curves represent the measured inpug thisi continuous
In the ﬂgure,umeaS is illustrated as a dotted curve of colorcurves correspond to the input given by the supervisor. The axis is red

corresponding to the color of each vehicle. The dotted curl
is only visible whenu,, is different than the input returned
by the supervisor. The supervisor runs with a time steppfng
7 = 0.1s and we defind = 1s. The time interval where the
supervisor is overriding the drivers’ input is highlightasl the
red-portion of the time axis in the bottom panel of Fig. 9(b)
In Fig. 9(a), where the vehicles perform a safe manoeuvé

éhe supervisor is overriding the desired input, blackeottise.

Rtersection. As expected, the proposed supervisor is table
identify vehicles that need to be overridden from those doat
not: the supervisor only overrides the blue (solid line) aedl
dotted line) vehicles front = 9.4s until ¢ = 12.5s, see the
Bd portion of the x-axis Fig. 9(b). During this intervaleth

we can see that the supervisor never overrides the driveigie (solid line) vehicle is forced to accelerate while tee r
tted line) decelerates, and this while minimizing thinity

the hypothesis on the driver's behaviay,, is always safe 4
according to (6). Such results show that, given the expect%
input signaluy,,, the proposed supervisor does not unne

essarily override the proposed control input and leaves t
control of the vehicle to the drivers whenever their behaigo
considered safe. Fig. 9(b) considers a different data gbreé

vehicles. Here, the vehicles’ inputs have been (artifigjall
shifted in time so that it is coherent with a collision betwee
the blue (solid line) and red (dotted line) vehicles, whil&-

Simulation results

rm error with respect to the input provided by the drivers.
owever, the green (dashed line) vehicle is never overridde
Pis behaving safely), even though),,, is different from the
river's desired input. For this scenario, the maximum thme
run the optimization algorithm was 03s.

the green vehicle (dashed line) performs a safe manoeuvern the following, we present simulation results for a three-
considering the collision threat, its stops before reaghire vehicle system. In all simulations the initial conditioristbe
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Figure 10. Simulated three-vehicle scenarios witk 0.1s: (a) the non-optimized solution; the proposed optimal suiper (Algorithm 4) with: (b)6 = 0.1s;
(c) 8 = 0.2s; (d) 0 = 1s; (e) & = 2s. In the bottom panels, the dotted curves represent the meghsput, while the continuous curves correspond to the
input given by the supervisor. The time axis is red if the suiger is overriding the desired input, black otherwise.

system arex = [(0,10), (8,10), (16,10)] and the supervisor initial conditions. We consider a three vehicle setup restjng
runs with a time stepping of = 0.1s. For simplicity, we a uges = upy, = 1, with a randomly chosen initial
assume that the drivers of all vehicles always request ant inpositionz;(0) € [0,60]m and speed:;(0) € [Vmin, Vmaz], Vi-
equal tou,,..s = 1, and that the intersection corresponds t®he intersection corresponds to the inter{@, 75)m along
the interval[60, 75]m along all vehicles’ path. Furthermore, inthe vehicles’ paths, the simulation time & and 7 =
order to discuss later the influence of the prediction harizo 0.1s. This means that there arer(of initial conditions x
we consider four distinct values € {0.1,0.2, 1,2} seconds. nr. of vehicles x simulation time/7) samples. The results of
We consider the non-optimized approach given in [18] faandomized simulations are presented in Fig. 11. We conside
all vehicle i in the interval[a;, — 30,b;Jm. Vehicles outside the multi-objective optimization algorithm (15) for diffent
this interval never need an override (they can stop beforalues off, and we compare our optimal approach with the
the intersection or they have passed it), and can there®reron-optimized one. In panel (a), we show in the horizonta ax
removed from the supervisor problem. the input difference and in the vertical axis the percentage
The non-optimized supervisor solution is presented f samples for which(u;(kT) — w; meas(k7)) < &, i.€., the
Fig. 10(a), ford = 0.1s. We will use this case to highlight thepercentage of samples for which the supervisor overrides th
advantages of the proposed optimal design. One can see thaters’ request with an input lower tha&t; ,eqs(k7) + &)
att = 3.2 seconds into the simulation, the supervisor deteatsth ¢ < 0. Ideally, the curves should be as low as possible
that vehicles are about to leave the MCIS and intervenes by the left-hand side, i.e., the percentage of samples faohwh
applying bang-bang control inputs. the input mismatch is large should be as low as possible. One
Fig. 10(b) shows the behavior of the proposed optimahn see that having = 1s andf = 2s greatly reduces the
supervisor wherd = 0.1s. See that the time instant whemumber of large interventions when compared to the non-
the supervisor intervenes for the first time is identical toptimized solution (blue liné). One can also observe that
Fig. 10(a). However, the control input profiles differ. Wil the optimal solution withd = 0.1s andf = 0.2s does not
in Fig. 10(a) the supervisor immediately proposes banggbaimcrease the optimality level. Nevertheless, as showngn Fi
inputs, in Fig. 10(b) the control inputs are optimized, selie proposed solution is able to identify vehicles whichchee
the “stair-like” profile of the green (dashed) and red (difteto be overridden from those who do not. In panel (c), we
curves beforeé = 4s. Our solution is able to identify vehiclesshow the symmetric case, i.e., on the vertical axis is shovn t
that need to be overridden from those that do not, see the paicentage of samples for whi¢h; (k7) — u; meas (k7)) > &
(dotted line) trajectory, which is overridden slightlydatthan with £ > 0. As expected, increasing the valuefafeduces the
in Fig. 10(a). This effect in magnified in Fig. 7. number of interventions with a large mismatch with respect t
Fig. 10(c) considers the same scenario wifer= 0.2s. the drivers’ intent. Finally, we can observe in panel (b) the
By optimizing over a longer prediction horizon, it providas percentage of non-overridden samples: increagirgiightly
better approximation of the drivers’ inputs while avoidimgp  increases the percentage of overrides, froi for the non-
consecutive collisions: a three-vehicle conflict frere 3s to optimized solution (i.e.839% of non-overrides) tol7% for
t = 4.6s and a two vehicle’s conflict from= 4.6stot = 6.3s. our optimal solution withd = 1s. However, as seen on the
Finally, Fig. 10(d-e) consider the cases whére- 1s and right- and left-hand side of panels (a) and (c), respegtivel
0 = 2s, respectively. When compared to the previous cases, the number of very small interventions is visibly higher
can see that this leads to more driver-friendly, less agiyes for the optimal solution with respect to the non-optimized
manoeuvres. Generally speaking, there is a trade-off on te. Increasing the value @f increases the number of total
restrictiveness of the supervisor: as the value dancreases,
int_er\_/entions_ will be triggered earlier than strictly neser_y. 1The evolution of the system depends on the supervisor deeas well as
This is clear if one compares the red segment of the horizonda the future requested input. Hence, a control strateggiwisisuboptimal for

axis (which represents the period during which the supervist giV?d” set of Ii”iga' dCO”di.“ort‘s may, in dthtf] long run, a”o‘?"t‘?l’re.t;%e”“e"

. . overrige signal. Had we just compare: e maximum o e lgrnorm

intervenes) between Fig. 1_O(d) e}nd 10_(6)' difference between the desired and override input, altesiies would have
We also perform randomized simulations for a set@f000 looked the same.
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Figure 11. Probability of havindu(kt) — uges(k7)): (a) less than (b) k [
equal to or; (c) greater than the value displayed on the abscissa axis. The -4 d -4
probabilities are computed via a Monte Carlo simulation aegof10, 000 s S SR N 4 — B
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randomized initial conditions and for different valuesof

Figure 12. Approximate supervisor Algorithm 4 applied tarawdated eight-
vehicle scenario withr = 0.2s and : (a)0 = 0.4s; (b) 8 = 2s. In the bottom

. . panels, the dotted curves represent the measured inpdg thibi continuous
Ove_mdes but reduces the differenqe — ume{w)- Hence, _by curves correspond to the input given by the supervisor. The &xis is red
tuning the value of), one can better approximate the driver's the supervisor is overriding the desired input, blackenttise.

desired input and provide a more user-friendly experiefibe.
worst computation time over thH2430.000 samples i$).087s.
are detected. Hence, by keepingunchanged, one can

D. Approximate algorithm improve its performance by increasing the valuefof
This leads to more driver-friendly, less aggressive ma-
noeuvres. A great advantage with respect to MPC is
that the complexity of the \erification Problem remains
unchanged, independently 6f

« (i) Normally, input, state and safety constraints are for-
mulated in optimal control-based approaches as inequal-
ities or box conditions for all prediction instants. Hence,
the number of decisions variables drastically increases fo
large prediction horizons and infinite horizon problems
cannot easily be treated in practice. In this work, we
use a different approach and formalism: input, state
and safety constraints are incorporated in all problems
through the conditiox(7, u, x) € MCIS. By leveraging
this formulation and the properties of the MCIS set,
we are in fact solving an infinite horizon optimization
problem that guarantees perpetual safety.

« (iii) The supervisor routine is implemented with a step-
ping 7. Hence, the supervisor’s output control signal is
only applied for the interval0, 7], i.e., until the next
supervisor step. By regularly computing a new control
policy, one can more easily cope with limited sens-
ing/communication disturbances, as well as mitigate and
compensate potential estimation errorswgy,,.

We present in this section simulation results for the ap-
proximate supervisor discussed in Section VII-A. We coessid
an eight-vehicle scenario, where initial conditions forctea
vehicle i is given asz; = (i x 8,10),Vi = {0,...,7}. The
maximum time to run the optimal algorithm for an eight-
vehicle problem beind).15s, we have therefore defined the
time stepping asr = 0.2s. As before, it is assumed that
upyp = 1 (horizontal dotted line), and that the intersection
corresponds to the interv@0, 75]m along all vehicles’ path.

Fig. 12(a)-(b) consideé = 0.4s andd = 2s, respectively.
By optimizing the trajectories over a longer predictionibon,
one can see that the supervisor approximates better trersiriv
desired inputs. Note that, as discussed before, inteomti
are triggered earlier as the value 6fincreases. Indeed,
while in Fig. 12(a) the first intervention happenstat 1s
in the simulation, in Fig. 12(b) interventions are triggere
immediately at the initial time. Moreover, while in Fig. B)(
the red vehicle is not able to cross the intersection wiftis
of simulation, in Fig. 12(b) all vehicles clear the interseq.

Recall that the necessity of approximate solutions relies o
the fact that the exact supervisor algorithm may be untbdeta
for relatively small scale scenariosHowever, by using the
approximate algorithm proposed in [32], we are able to solve ] ) ) )
more complex problemsHere, the maximum computational Optimal conflict resolution approaches are still rare in
time is only 2.5 times higher than the exact solution for diterature. The major contribution of this paper is therefthe

three-vehicle case, but for an almost three times b|ggee8ys inCIUSion Of Optlmahty argumentS (W|th I’eSpeCt to the dl’B/
desired input) into the design of our supervisor. This dyeat

differs from previous works in this domain such as [15]-[18]
which ignore optimality and do not attempt to approximate
We presented an optimal supervisor for collision avoidangge drivers’ intent whenever the drivers’ input is overead
at intersections leveraging results on scheduling thedsy. \We also present a more generic, robust theoretical framewor
in an optimal constrained control framework (and Mod&lhen compared with our previous work [25]. More precisely,
Predictive Control (MPC) in particular), there are two maiye propose a solution robust to input uncertainties, easily
underlying aspects: (i) input/state constrained preoiistj (i) extendable to also cope with modelling and measurement
a receding horizon implementation. A brief comparison igncertainties by exploring a solution identical to [15].[&8],
given in the following: a two-step optimization procedure was presented, but lacks
o (i) Here, the variabled in (12) and (14) can be seenproof of optimality of the result of the two steps combined.
as a prediction horizon, defining how far ahead conflictdere, we prove the optimality of our solution. Finally, weal

IX. DISCUSSION AND CONCLUSIONS
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adapted the approximation strategies proposed in [18] t& wqg24]
as part of the optimal control design step. We are theretoes a

to cope with a set of eight or more vehicles in real tifReture
research should approach scenarios with multiple vehpees [25]
path and driver intent estimation techniques.
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