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Abstract

In this report, we address the problem of optimal and safe coordination of au-
tonomous vehicles through a traffic intersection. We state the problem as a finite time,
constrained optimal control problem, which result into a combinatorial optimization
problem that might be difficult to solve in real-time. A low complexity computational
scheme is proposed instead, based on a hierarchical decomposition of the optimal con-
trol formulation, where a central coordination problem is solved together with a number
of local optimal control problems for each vehicle. We show how the proposed decom-
position allows a drastic reduction of the complexity of the central problem, provided
that approximated solutions of the local problems are available beforehand.

1 Introduction

While autonomous vehicles today are mere demonstrators of the technological capabilities
and achievements of car manufacturers and universities, they are likely to penetrate the
market on a broad scale in the future. Together with widespread use of vehicle-to-vehicle
(V2V) communication this will transform the road traffic system and enable large improve-
ments in terms of safety, energy efficiency and infrastructure utilization [1]. A particularly
problematic subset of the scenarios in the traffic system are intersections, in which a dispro-
portionally large proportion of accidents, injuries and fatalities occur, and where a large part
of inefficiencies originate [2]. It is therefore natural to investigate coordination algorithms for
autonomous vehicles at intersections and how this technology could be exploited to alleviate
these issues. In particular, scenarios where all vehicles are autonomous and communicating
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offers the possibility to remove the current coordination mechanisms (e.g., traffic lights, signs
and rules) and solely rely on cooperative coordination among the involved vehicles. Besides
safe operation, optimization with respect to objectives like overall energy efficiency are then
possible by, e.g., slowing down lighter vehicles in favour of heavier ones [1] as soon as they
are within a reliable wireless communication range [3].

Several algorithms have been presented that address the coordination problem at inter-
sections for fully autonomous vehicles. Commonly, the presence of a central decision maker is
assumed, which manage time-space reservations in the intersection to avoid collisions [4–8].
However, several decentralized schemes have also been considered, e.g., as in [9, 10], based
on reachability analysis and sequential decision making, or in [11] based on event driven in-
teraction protocols. Most of the existing work place heavy emphasis on safety and collision
avoidance, and designs that are designed to simultaneously address efficiency are rare.

In this report, we formulate and study the intersection coordination problem for au-
tonomous vehicles using a finite time, constrained optimal control formalism, where the
global (intersection-wide) objective is to optimize is a sum of local costs. The formulation
results in the prohibitively hard combinatorial problem of choosing the order in which the
vehicles cross the intersection, constrained by the vehicle dynamics and physical limitations.

The main contribution in this report is a decomposition scheme that gives a approximate
solution of the original optimal control problem with significantly lower demands computa-
tional capabilities and information exchange. In particular, the combinatorial part of the
problem (the vehicle ordering) is first separated from the problem of finding the appropriate
control inputs, and then solved approximately, giving guaranteed collision free intersection
occupancy time slots that are feasible under the vehicle dynamics and physical constraints.
The control inputs are thereafter found by solving one optimal control problem for each ve-
hicle, constrained so that occupancy of the intersection is allowed only within the computed
time slot.

2 Problem Statement and Formulation

We consider a scenario where N ∈ Z+ vehicles approach a traffic intersection along predefined
paths, as visualized in Fig. 2.1a. There is only one vehicle per path and the traffic intersection
is thus the area where two or more paths paths intersect. The coordination is then the
problem of controlling the motion of each vehicle along its path such that that access to
the intersection area is mutually exclusive. The motion dynamics along the path of the i-th
vehicle are described by

ẋi(t) = Aixi(t) +Biui(t),

yi(t) = Cixi(t),
(2.1)

where xi(t) ∈ Rni and ui(t) ∈ Rmi are the state and control input vectors and the scalar
output yi(t) is the position along the path. The pair (Ai, Bi) is assumed controllable and
the state and input trajectories are constrained by the linear inequalities

Gix(t) ≤ bi, ∀t,
Fiu(t) ≤ di, ∀t,

(2.2)
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Figure 2.1: Illustration of the considered scenario: (a) A road intersection scenario with predefined paths
p1, p2, p3. The region where collisions can occur is marked in red, (b) The abstraction of the intersection
used in modelling.

with Gi ∈ Rki×ni , bi ∈ Rki , Fi ∈ Rqi×mi , di ∈ Rqi , arising from, e.g., actuator limitations and
design requirements. Additionally, for technical reasons we only consider strongly output
monotone systems, i.e., systems satisfying

ẏi(t) = Ciẋi(t) ≥ ε,∀t, (2.3)

for some ε > 0. Note that (2.3) implies that a vehicle can neither reverse nor stop at any
time, but that arbitrarily small ε are possible and therefore arbitrarily low speeds. For
brevity, we denote by Di(x0,i) the set of solutions (xi(t), ui(t)) to (2.1) with initial condition
xi(0) = x0,i, satisfying (2.2) and (2.3).

We model the intersection as a closed and compact subset of positions along the path
of each system, defined by the lower and upper bounds Li and Hi, respectively, as de-
picted in Fig. 2.1b. A vehicle is therefore inside the intersection at time t if xi(t) ∈ Ei =
{x | Li ≤ Cix ≤ Hi}, and the collision avoidance requirements are consequently[

xTi (t), xTj (t)
]T

/∈ Ei × Ej, ∀t, ∀i, j ∈ N , i 6= j, (2.4)

where × denotes the cartesian product and N = {1, ..., N}. Note that with a proper choice
of Li and Hj and Hi−Li large enough, we can neglect the influence of the vehicle geometry.

2.1 Optimal Control Formulation

Consider the local performance criterion

Ji(xi(t), ui(t)) =

∫ tf

0

Λi(xi(t), ui(t))dt, (2.5)

where Λi(xi(t), ui(t)) is quadratic and convex in xi(t) and ui(t), and tf is the final time. The
problem of finding the optimal, physically feasible control functions that avoids collision can
then be formalized as follows:



Problem 1 (Optimal Coordination Problem (OCP)). Given the initial states xi(0), i ∈ N
solve the problem

min
x(t),u(t)

N∑
i=1

Ji(xi(t), ui(t)) (2.6a)

s.t. [xTi (t), uTi (t)] ∈ Di(xi(0)), ∀i ∈ N (2.6b)

[xi(t), xj(t)] /∈ Ei × Ej, ∀t, ∀i 6= j (2.6c)

where x(t) = [xT1 (t), ..., xTN(t)]T , u(t) = [uT1 (t), ..., uTN(t)]T .

It is emphasized that the collision avoidance condition (2.6c) renders the problem non-
convex, as visualized in Fig. 2.2. More precisely, a solution to (2.6) contains the best of the
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Figure 2.2: Schematic illustration of a 2D cut of the state-space in (2.6). The red area contains the infeasible
state space combinations according to (2.6c) and corresponds to collisions between vehicles 1 and 2.

N ! possible intersection crossing orders, in Fig. 2.2 corresponding to trajectories that goes
above or below the red square. The problem is thus combinatorial and the solution need to
be calculated using combinatorial optimization techniques.

In the next section, a decomposition is presented for the OCP, with the objective of
designing low complexity algorithms for approximate solution.

3 Problem decomposition

In order to present the decomposition of Problem (1) we need to introduce the following
additional notation.

Given Cxi(0) < Li, the times τi and ξi when the i-th vehicle enters and exits, respectively,
the intersection are defined as

τi = t : Cixi(t) = Li, ξi = t : Cixi(t) = Hi. (3.1)



Note that (2.3) implies the uniqueness of the pair (τi, ξi) for a given xi(t), and that the
occupancy time interval [τi, ξi], i.e., t ∈ [τi, ξi] ⇔ xi(t) ∈ Ei, is closed and compact when
Hi > Li. With (3.1), condition (2.4) can therefore equivalently be restated as

[τi, ξi] ∩ [τj, ξj] = ∅, ∀i, j ∈ N , i 6= j. (3.2)

We first introduce the coordination problem, which optimally allocates occupancy times-
lots to each vehicle as

min
T,E

N∑
i=1

Fi(τi, ξi)

s.t. [τi, ξi] ∩ [τj, ξj] = ∅, ∀i, j ∈ N , i 6= j,

[τi, ξi] ∈ Si(x0,i).

(3.3a)

where T = [τ1, .., τN ]T , E = [ξ1, ..., ξN ]T , while Fi(τi, ξi) and Si(x0,i) are the value function
and the set of feasible parameters, respectively, of the following local, convex parametric
optimization problems

Fi(τi, ξi) = min
xi(t),ui(t)

Ji(xi(t), ui(t))

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i),

Cixi(τi) = Li,

Cixi(ξi) = Hi,

(3.3b)

The solution to the right hand side of (3.3b) is thus the optimal input and state trajectories
given the parameters τi and ξi, which has the cost Fi(τi, ξi). The following results then hold

Theorem 1. The optimization problems (2.6) and (3.3) are equivalent.

Proof. First we note that both (2.6) and (3.3) are non-convex and have more than one
solution in general, but that given [τi, ξi] the right hand side of (3.3b) is convex and has a
unique solution. Let [τ ∗i , ξ

∗
i ], i = 1, ..., N be minimizers of (3.3) and x̄i(t), ūi(t), i = 1, ..., N

be minimizers of (2.6). Further, let x∗i (t), u
∗
i (t) be the unique minimizers of the right hand

side of (3.3b) given [τ ∗i , ξ
∗
i ] and [τ̄i, ξ̄i] the unique entry and exit time given by x̄i(t) through

(3.1). Since solutions of (3.3) satisfies (3.2) and solutions to (2.6) satisfies (2.4), and since
the two collision avoidance conditions are equivalent, we have that [τ̄i, ξ̄i] is feasible in (3.3)
and x∗i (t), u

∗
i (t) is feasible in (2.6). We therefore have that

N∑
i=1

Fi(τ
∗
i , ξ

∗
i ) ≤

N∑
i=1

Fi(τ̄i, ξ̄i) (3.4)

N∑
i=1

Ji(x̄i(t), ūi(t)) ≤
N∑
i=1

Ji(x
∗
i (t), u

∗
i (t)). (3.5)



By definition we have Ji(x̄i(t), ūi(t)) = Fi(τ̄i, ξ̄i) and Ji(x
∗
i (t), u

∗
i (t)) = Fi(τ̄i, ξ̄i), and hence

that
N∑
i=1

Ji(x
∗
i (t), u

∗
i (t)) =

N∑
i=1

Fi(τ̄i, ξ̄i). (3.6)

Since x∗i (t), u
∗
i (t) are uniquely given for any [τi, ξi] by the right hand side of (3.3b), and [τi, ξi]

is uniquely given for any x(t)i, u(t)i through (3.1), we conclude that the two problems are
equivalent.

Furthermore, assuming Cx0,i < Li < Hi and tf sufficiently large, we define:

Definition 1 (Earliest and latest entry time). The earliest (latest) entry time, T li (T hi ) ∈ R
is defined as τ : Cixi(τ) = Li, where xi(t) is the solution to

max(min)
xi(t),ui(t)

Cx(tf )

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i).
(3.7)

Definition 2 (Earliest and latest exit time). given τi ∈ [T li , T
h
i ], the earliest (latest) exit

time, El
i(τi) (Eh

i (τi)), is defined as t : Cixi(t) = Hi, where xi(t) is the solution to

max(min)
xi(t),ui(t)

Cx(tf )

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i)

Cixi(τi) = Li.

(3.8)

The following result holds for the exit times:

Proposition 1. El
i(τi), and E

h
i (τi) are continuous, strictly increasing in [T li , T

h
i ].

Proof. The subscript i will be dropped in this proof for ease of notation. We define a
relaxation of (3.8) as

min
[zT (t),uT (t)]∈D(z0)

Cz(tf )dt

s.t. Cz(τ) ≥ L.
(3.9)

with solution z∗τ , where the subscript designates the entry time enforced. Equation (3.9)
is a strictly convex problem, and Czτ (t) ≥ L will be active ∀τ ∈ [T l, T h] at its unique
minimum. Therefore, we have that z∗τ = x∗τ , where x∗τ is the solution to (3.8) with entry
time τ . Furthermore, for β ∈ [T l, τ), we have that Cx∗β(β) = L =⇒ Cx∗β(τ) > L
by (2.3), due to which x∗β(t) is feasible in (3.9) and thus Cx∗β(tf ) > Cz∗τ (tf ) = Cx∗τ (tf ).

Then, setting tf = El
i(τ), we have Cx∗β(El(τ)) > Cx∗τ (E

l(τ)) = H, and by (2.3) that

t : Cx∗beta(t) = H < El(τ). As a consequence, El(β) < El(τ). The same reasoning applies
to Eh(τ).

The sets Si(x0,i) of feasible parameters are then such that



Proposition 2. Si(x0,i) = {(τi, ξi) : τi ∈ [T li , T
h
i ] and ξi ∈ [El

i(τi), E
h
i (τi)]} and is a closed

and compact set.

Proof. Following the convexity of Di(x0,i), convex combinations of xi(t) : xi(T
l
i ) = Li

and xi(t) : xi(T
h
i ) = Li are also in Di(x0,i), giving that xi(t) ∈ Di(x0,i) : Cixi(τi) = Li

can be found for all τi ∈ [T li , T
h
i ]. With τi ∈ [T li , T

l
i ], the same argument holds for ξi ∈

[El
i(τi), E

h
i (τi)], giving that ∃x(t) ∈ D(x0,i) with τi ∈ [T li , T

h
i ] and ξi ∈ [El

i(τi), E
h
i (τi)]. Con-

versely, by Definitions 1 and 2, no τi /∈ [T li , T
h
i ] nor ξi /∈ [El

i(τi), E
h
i (τi)] exists, and we

thereby have that Si(x0,i) = {(τ, ξ) | τ ∈ [T li , T
h
i ], ξ ∈ [El

i(τ), Eh
i (τ)]}. Since (T li , T

h
i ) 6= ∅,

and El
i(τi) < Eh

i (τi) and El
i(τi), E

h
i (τi) continuous, Si(x0,i) is closed and compact.
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Figure 3.1: Schematic visualization of the defining elements of Si(x0,i). The curved black lines represent
the trajectories resulting from maximum and minimum control signal respectively. The curved blue lines
show the same given that the entrance time τi is enforced. The red line is the optimal trajectory when τi is
enforced.

Additionally, we define

Definition 3 (Optimal exit time). The optimal exit time given an entrance time τi ∈ [T li , T
h
i ]

is defined as gi(τi) = t : Cixi(t) = Hi, where xi(t) is the minimizer of

min
xi(t),ui(t)

Ji(xi(t), ui(t))

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i),

Cixi(τi) = Li.

(3.10)

It immediately follows that gi(τi) is uniquely defined (due to convexity of (3.10)), con-
tinuous and that El

i(τi) ≤ gi(τi) ≤ Eh
i (τi). It also follows that Fi(τi, gi(τi)) ≤ Fi(τi, ξi),∀ξ ∈

[El
i(τi), E

h
i (τi)], with equality only for ξi = gi(τi), and that the minimizer [τ ∗i , ξ

∗
i ] of Fi(τi, ξi)

is such that gi(τ
∗
i ) = ξ∗i . We then have:

Theorem 2. Solutions to (3.3a) satisfy ξi ≤ gi(τi) , i ∈ N .



Proof. Assume that the timeslots [τ ∗i , ξ
∗
i ], i = 1, ..., N is the optimal solution of (3.3a), and

that ξ∗j > gj(τ
∗
j ) for some j ∈ N . We then have ∀j 6= i, [τ ∗i , ξ

∗
i ] ∩ [τ ∗j , ξ

∗
j ] = ∅ =⇒

[τ ∗i , ξ
∗
i ] ∩ [τ ∗j , gj(τ

∗
j )] = ∅, whereby (3.2) holds and [τ ∗j , gj(τ

∗
j )] is feasible in (2.6). Since

F (τ ∗j , g(τ ∗j )) < F (τ ∗j , ξ
∗
j ) by Definition 3, [τ ∗i , ξ

∗
i ], i = 1, ..., N can not be the optimal solution

to (2.6) if ξ∗j > gj(τ
∗
j ). Therefore, all solutions are such that ξ∗j ≤ gj(τ

∗
j ).

We additionally have that:

Proposition 3. Fi(τi, ξi) has a unique minimum in Si(x0,i).

Proof. Let x∗i (t), u
∗
i (t) be the solution of

min
xi(t),ui(t)

Ji(xi(t), ui(t))dt

s.t. [xTi (t), uTi (t)] ∈ Di(x0,i),
(3.11)

corresponding to τ ∗i and ξ∗i through (3.1). From the strict convexity of (3.11) and the
uniqueness of (3.1), x∗i (t), u

∗
i (t) and therefore τ ∗i , ξ

∗
i are unique. Any τi 6= τ ∗i and ξi 6= ξ∗i

will thus correspond to a xi(t) 6= x∗i (t) and ui(t) 6= u∗i (t) due to which we have Fi(τ
∗
i , ξ

∗
i ) <

Fi(τi, ξi), ∀τi 6= τ ∗i , ξi 6= ξ∗i .

Finally, we have that:

Proposition 4. Fi(τi, ξi) is increasing with |τi − τ ∗i | and |ξi − ξ∗i |.

Proof. We drop the index i for convenience. Fixing a τ ∈ [T l, T h], and letting Eh(τ) > ξ >
g(τ) we define a relaxation of (3.3b) as

F̃ (τ, ξi) = min
x(t),u(t)

J(x(t), u(t)) (3.12a)

s.t. [xT (t), uT (t)] ∈ D(x0), (3.12b)

Cx(τ) = L,Cx(ξ) ≤ H. (3.12c)

From Definition 3 its clear that F (τ, g(τ)) < F (τ, ξ), and as a result also that F̃ (τ, ξ) =
F (τ, ξ), i.e., (3.12c) will be active. Then, with Eh(τ) > α > ξ, the minimizer to the
right hand side of (3.3b), given (τ, α), x∗α(t), u∗α(t), will be feasible in (3.12), given [τ, ξ]
since Cx∗α(ξ) < H due to (2.3). As (3.12) is a strictly convex problem, we conclude that
F (τ, g(τ)) < F (τ, ξ) < F (τ, ξ), for g(τ) < ξ < α < El(τ), and, with reversal of (3.12c),
g(τ) > ξ > α > Eh(τ). With tl = τ : Eh(τ) = ξ and th = τ : El(τ) = ξ, for some ξ, we
know that [tl, th] ⊂ [T l, T h] is compact, since El(τ) and Eh(τ) are strictly increasing by by
Proposition (1). Proposition 2 furhter gives that F (τ, ξ) exists for all τ ∈ [tl, th]. Fixing
ξ, and relaxing (3.12b) instead of (3.12c), we can thereby apply the same arguments for
|ξ − ξ∗|.

To summarize, Si(x0,i) is a closed and compact set in the [τi, ξi] parameter space, im-
plicitly defined through the constraints (2.1),(2.2) and (2.3), and Fi(τi, ξi) is “bowl-shaped”
with a unique minimum in this set.



4 Approximation

In this section the results presented in Section 3 will be used to construct a computational
scheme for approximating the solutions of (2.6). More precisely, we propose a two staged
procedure where (3.3a) first is solved using approximations of Fi(τi, ξi) and Si(x0,i) for ap-
proximately optimal occupancy time slots [τ ∗i , ξ

∗
i ]. Using these, a relaxation of (3.3b) is then

solved for each vehicle to obtain the state and control trajectories x∗i (t) and u∗i (t). Conditions
are given on how Fi(τi, ξi) and Si(x0,i) must be formed to guarantee that a solution to the
approximation scheme is feasible in terms of (2.6).

4.1 Relaxation

Consider the following relaxation of problem (3.3b)

min
xi(t),ui(t)

Ji(xi(t), ui(t)) (4.1a)

s.t. [xTi (t), uTi (t)] ∈ D(x0,i), (4.1b)

Cx(τ ∗i ) ≤ Li, (4.1c)

Cx(ξ∗i ) ≥ Hi, (4.1d)

and denote by x∗i (t), u
∗
i (t) its solution for a given [τi, ξi]. The actual entry and exit time

τ̂i = t : Cix
∗
i (t) = Li, ξ̂i = t : Cix

∗
i (t) = Hi are then such that [τ̂i, ξ̂i] ⊆ [τi, ξi], since by

(2.3), Cx∗i (τi) < Li ⇒ τ̂i > τi and Cx∗i (ξi) > Hi ⇒ ξ̂i < ξi. Note that due to (2.3), solutions
exists to (4.1) provided that I) τi ≤ T hi since otherwise τ̂i > T hi , and II) ξ∗i ≥ El

i(τi), since
otherwise ξ̂i ≥ El

i(τi). The bounds τ ≥ T li and ξ ≤ Eh
i (τi) on the other hand, does not affect

the feasibility of (4.1) due to the direction of the inequalities (4.1c) and (4.1d).

4.2 Explicit approximation of Si(x0,i)

We first note that the solution to (3.3a) are sought in Sei (x0,i) = Si(x0,i) \ {τ, ξ | ξ > gi(τ)},
i = 1, ..., N , according to Theorem 2. Due to this it is only necessary to find an approximation
Ŝei (x0,i) of Sei (x0,i). To ensure that all elements in the approximation are feasible in terms

of the relaxed local problem, it is as described above necessary that all [τi, ξi] ∈ Ŝei (x0,i)
satisfies τ ≤ T hi and El

i(τi) ≤ ξi for problem (4.1). Similarly, to avoid removing the optimal
exit time given τi, gi(τi), Ŝei (x0,i) must be such that ξi ≤ gi(τ). While T li , T

h
i are easily

computed through Definition 1, neither El
i(τi) nor gi(τi) are easily obtained. However, by

choosing strictly increasing functions ui(τi) and li(τi) such that gi(τi) ≤ ui(τi), E
l
i(τi) ≤ li(τi)

and li(τi) ≤ ui(τi),∀τi ∈ [T li , T
h
i ] and letting

Ŝei (x0,i) =
{
τi, ξi | τi ∈ [T li , T

h
i ], ξi ∈ [li(τ), ui(τ)]

}
, (4.2)

we have by Proposition 2 that (4.1) is feasible ∀[τi, ξi] ∈ Ŝei (x0,i), and that [τi, gi(τi)] ∈
Ŝei (x0,i),∀τi ∈ [T li , T

h
i ], without direct use of gi(τi) or El

i(τi). Consequently, if occupancy

times [τi, ξi] ∈ Ŝei (x0,i), i = 1, ..., N are such that [τi, ξi] ∩ [τj, ξj] = ∅, then the actual
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Figure 4.1: Schematic visualization of the proposed approximation method for Si(x0,i). The blue bordered

area represents Ŝei (x0,i), the black bordered area Si(x0,i). The area in dashed black shows Sei (x0,i)\Ŝei (x0,i),

i.e., feasible solutions that are lost in the approximation, whereas Ŝei (x0,i) \ Sei (x0,i), shown in dashed red,
contains elements that are unnecessarily considered.

occupancy times [τ̂i, ξ̂i], are such that [τ̂i, ξ̂i]∩ [τ̂j, ξ̂j] = ∅ and therefore also feasible in (3.3).

The solutions [x∗i (t), u
∗
i (t)] to (4.1) for i = 1, ..., N corresponding to [τ̂i, ξ̂i], are in that case

also feasible in (2.6) by Theorem 1.

Remark 1. Note that usage of this approximation has two consequences. First, all [τi, ξi] ∈
Sei (x0,i)\Ŝei (x0,i) belong are feasible in the exact formulation of (3.3a), but removed from the

approximate formulation a priori. Second, all [τi, ξi] ∈ Ŝei (x0,i)\Sei (x0,i) could be solutions to
the approximate formulation of (3.3a), but by Theorem 2 never to the exact. Consequently,
the scheme is conservative as larger timeslots than strictly needed might be retrieved from
the solution of the approximate formulation. Tighter bounding functions li(t) and ui(t) will
reduce the conservativeness and expand the set of feasible solutions. An illustration of the
set Si(x0,i)e and its approximation Ŝei (x0,i) based on linear bounds li(τi), ui(τi) is given in
Fig. 4.1.

4.3 Explicit approximation of Fi(τi, ξi)

According to Propositions 3 and 4, Fi(τi, ξi) has a unique minimum at τ ∗i , ξ
∗
i and increases

with |τi−τ ∗i | and |ξi−ξ∗i |. We therefore propose the use of a strictly convex function F̂i(τi, ξi)
with minimum in τ ∗i , ξ

∗
i .

4.4 Approximate coordination

With the explicit approximations F̂i(τi, ξi) ≈ Fi(τi, ξi) and Ŝei (x0,i) ≈ Sei (x0,i), we form the
approximation of (3.3a) using N(N − 1)/2 auxiliary variables δij ∈ {0, 1} and the “Big-M”



technique as

min
T,E,D

N∑
i=1

F̂i(τi, ξi)

s.t. (τi, ξi) ∈ Ŝei (x0,i), ∀i ∈ N ,
∀i, j ∈ N , i > j :

ξi ≤ τj +Mδij, ξj ≤ τi +M(1− δij),

(4.3)

where D = [δ12, δ13, ..., δ1N , δ23, ..., δ(N−1)N ].

4.5 Proposed Algorithm

The three main steps of the proposed coordination algorithms are summarized next.

1. [Offline] ∀i ∈ N : Compute Ŝei (x0,i) and F̂i(τi, ξi). The calculation can be indepen-
dently performed by each vehicle.

2. [Online] Centrally solve (4.3) with Ŝei (x0,i) and F̂i(τi, ξi) calculated at step 1, to ob-
tain [τ ∗i , ξ

∗
i ],∀i ∈ N . If not solvable, return infeasible.

3. [Online] ∀i ∈ N : With [τ ∗i , ξ
∗
i ], solve (4.1) for minimizers x∗i (t), u

∗
i (t), ∀i ∈ N .

Due to the construction of Ŝei (x0,i) the algorithm can be conservative, as described in Re-

mark 1. In particular, Problem (3.3a) might be infeasible with Ŝei (x0,i), although feasible
with Sei (x0,i). However, since solutions to (4.1) has solutions for all feasible solution to the
approximate formulation of (3.3a), the algorithm cannot provide a solution that is infeasible
in (2.6).

5 Numerical Example

In this section, we present a numerical evaluation of the algorithm introduced in Section 4
and details the three steps described in Section 4.5. Results from an evaluation over a range
of random vehicle configurations is presented. In particular, the performance of the proposed
algorithms is compared against the exact solution in terms of sub-optimality and effective
execution time (using commercially available standard solvers) is presented and discussed.

5.1 Vehicle Model

Problem (2.6) is discretized on a uniform time grid of size K ∈ R+, so that the sample time
∆t = tf/K. Furthermore, the vehicles are modelled as double integrators, i.e.,

xi(k) = Aixi(k − 1) +Biui(k − 1), (5.1)

where

A =

[
1 ∆t
0 1

]
, B =

[
0

∆t

]
, C =

[
1 0
]
. (5.2)



and the state vector is defined as xi(k) = [pi(k) vi(k)]T . Here pi(k), vi(k) are position and
velocity of the vehicle along the path, respectively, and k is the discrete time index, while
the control ui(k) is the vehicle acceleration. The constraints (2.2) and (2.3) are for simplicity
chosen as

¯
ui ≤ ui(k) ≤ ūi, 0 < εi ≤ vi(k) (5.3)

Further, we let the objective (2.5) be

Λi(xi(k), ui(k)) = (vd,i − vi(k))2Qi + u2i (k − 1)Ri (5.4)

where vd,i ∈ R+ is a constant reference velocity and Qi, Ri ∈ R+. For simplicity, the
intersection is defined equally large for all vehicles, i.e., so that Hi−Li = Hj−Lj,∀i, j ∈ N .

5.2 Exact Solution

Using (5.1), a discrete time statement of (2.6) can be formalized. The collision avoidance con-
straints (2.6c) are enforced by introducing auxiliary binary decision variables, δi(k), γi(k) ∈
{0, 1}, and for i = 1, ..., N and k = 1, ..., N and requiring that

Cixi(k) ≤ Li + δi(k)M, (5.5a)

Hi − γi(k)M ≤ Cixi(k), (5.5b)

δi(k) + δj(k) + γi(k) + γj(k) ≤ 3, (5.5c)

where M is a sufficiently large number. The discrete time formulation of (2.6) thus becomes

min
X,U,D

N∑
i=1

K∑
k=1

Λi(xi(k), ui(k))

s.t. xi(0) = x0,i, ∀i ∈ N
(2.2), (2.3), (5.1), (5.5a), (5.5b), ∀i ∈ N ,∀k ∈ K
(5.5c), ∀i, j ∈ N : j > i

(5.6)

with K = {0, ..., K}, X = [XT
i , ..., X

T
N ]T , U = [UT

i , ..., U
T
i ]T , Xi = [xTi (1), ..., xTi (K)]T ,

Ui = [uTi (1), ..., uTi (K)]T , and D containing γi(k), δi(k),∀k ∈ K,∀i ∈ N . This problem is
a mixed binary integer quadratic program (MBIQP) with 2NK binary and

∑N
i=1mi + ni

continuous variables, with K
∑N

i=1 ni equality- and K
∑N

i=1(qi+ki+1)+2N(N−1) inequality
constraints.

5.3 Approximate Solution

With the purpose of stating also the approximate formulation of (3.3a) as a MBIQP, the
bounding functions li(τi) and ui(τi) are chosen affine, and the approximation F̂i(τi, ξi) quadratic.



Step 1

The earliest and latest entry times [T li , T
h
i ] are first obtained through solution of (3.7).

Samples of El
i(τi) and gi(τi) on a grid of τi ∈ [T li , T

h
i ] are then obtained directly through

Definition 1 and Definition 3. Affine functions li(τi) and ui(τi) are thereafter fitted to the
data, constrained to satisfy El

i(τi) ≤ li(τi) ≤ ui(τi) and ui(τi) ≥ gi(τi) at all sampled τi,
giving the required components of Ŝei (x0,i). Similarly, samples of Fi(τi, ξi) are obtained by

solving (3.3b) on a grid of [τi, ξi] ∈ Ŝei (x0,i), after which a quadratic form F̂i(τi, ξi) is fitted
to the data. The retrieval of the samples involves solving multiple LP’s, El

i(τi)) and QP’s
(gi(τi), F̂i(τi, ξi), whereas the function fitting is done through LP’s (El

i(τi), gi(τi)) and SDP’s
(F̂i(τi, ξi)). The procedure is outlined in Algorithm 1.

Algorithm 1 Computation of Ŝei (x0,i)
1: Retrieve1 T li from max solution to (3.7).
2: Retrieve1 T hi from min solution to (3.7).
3: for each τ ji ∈ {τ ji }Jj=1 do

4: Retrieve1 El
i(τ

j
i ) from max solution to (3.8)2.

5: Retrieve1 gi(τ
j
i ) from solution to (3.10)2.

6: Fit ui(τi) to {gi(τ ji )}Jj=1, and li(τi) to {El
i(τ

j
i )}Jj=1.

7: return Ŝei (x0,i) = {τ, ξ|τ ∈ [T li , T
h
i ], ξ ∈ [ui(τ), li(τ)]}

Here, {τ ji }Jj=1, J ∈ Z+, on line 3 is a uniformly spaced sequence such that τ 1i = T li and

τJi = T hi . With {gi(τ ji )}Jj=1 and {El
i(τ

j
i )}Jj=1 known for all i from Algorithm 1, (3.3b) is

solved2,3 for P ∈ Z+ pairs (τ ri , ξ
r
i ), r = 1, ..., P , such that τ ri ∈ {τ ji }Jj=1 and El

i(τ
r
i ) ≤ ξri ≤

gi(τ
r
i ). With yri = [τ ri , ξ

r
i ]
T , F̂i(τi, ξi) is constructed from the solution of the semi definite

program

min
Si,fi,ri

P∑
j=1

(
yji
T
Siy

j
i + fTi y

j
i + ri − Fi(yji )

)2
s.t. Si � 0, Siy

∗
i + f = 0

y∗i
TSiy

∗
i + fTi y

∗
i + ri = Fi(y

∗
i ),

(5.7)

where y∗i = [τ ∗i , ξ
∗
i ]
T is the minimizer of (3.3b), as detailed in Proposition 3. With the

solution to (5.7) as S∗i , f
∗
i and r∗i we can thus state ∀i ∈ N :

F̂i(y) = yTi S
∗
i yi + f ∗i

Ty + r∗i . (5.8)

1Given the solution x∗(k) the entry (exit) time is taken as c∆t, where c is given from linear interpolation
between the last k : Cx∗(k) < 0(H) and the first k : Cx(k)∗ > 0(H).

2For τ such that τ/∆t /∈ Z, the entry time is enforced by αCx(bτc) + (1 − α)Cx(dτe) = 0, where
α = dτe − τ .

3For ξ such that c = ξ/∆t /∈ Z, the exit time is enforced by βCx(bcc) + (1 − β)Cx(dce) = H, where
β = dce − c.



Similarly, from the sequences {τ ji }Jj=1,{gi(τ ji )}Jj=1 and {El
i(τ

j
i )}Jj=1 known, the bounding func-

tions ui(τi) and li(τi) are constructed by solution to the linear program

min
k,m

∫ Th
i

T l
i

(kτ +m) dτ

s.t. kτ j +m ≥ f(τ j), j = 1, ..., J,

(5.9)

where f(τ j) is the evaluation in τ j of the function to be bounded. The solution (k∗,m∗)
then gives the affine function y(τ) = k∗τ +m∗. With this, Ŝei (x0,i) can be stated as a set of
linear inequalities.

Step 2

The approximate coordination (4.3) is solved using Ŝei (x0,i) and F̂i(τi, ξi), computed for all
i ∈ N , using the procedure detailed in the previous section. If feasible, the solution is the
non overlapping occupancy times [τ ∗i , ξ

∗
i ], i = 1, ..., N . Note that (4.3) then has N(N − 1)/2

binary and 2N real decision variables with N(N + 3) constraints, i.e., less binary variables
than (5.6) for N < 4H + 1 and in general much smaller sub-problems.

Step 3

Given the non-overlapping and suboptimal time slots [τ ∗i , ξ
∗
i ], i = 1, ..., N from Step 2, the

approximate solution x∗i (k), u∗i (k), k = 1, ..., K, i = 1, ..., N is obtained by separate solution
of the discretization of (4.1):

min
Xi,Ui

K∑
k=1

Λi(xi(k), ui(k)) (5.10a)

s.t. xi(0) = x0,i (5.10b)

(5.1), (5.3), k = 1, ..., K (5.10c)

Cxi(bτ ∗i /∆tc) ≤ 0, Cxi(dξ∗i /∆te) ≥ H, (5.10d)

for i = 1, ..., N , where d•e and b•c denotes rounding4 to the closest integer above and below
respectively.

4In (5.6) collision avoidance is enforced at integer multiples of ∆t only. For the approximations in (5.10d)
to conform to the constraint without being overly restrictive, the intersection entry and exit times are
enforced at the closes integer multiple of ∆t below τ∗i and above ξ∗i . For some ξi = τj we thus have that
if dτj/∆te = k then dξi/∆te = k + 1. At worst we then have Cxj(k) = 0 and Cxi(k) < H, as well as
Cxj(k + 1) ∈ [0, H] and Cxi(k + 1) = H. Consequently, the collision avoidance constraints (5.5), (5.5c) of
(5.6) are satisfied. For any other integers below bτi/∆tc or above dξi/∆te this is not the case, whereas this
scheme is minimally restrictive.



5.4 Simulation set-up

The evaluation is carried out on a class of scenarios with six vehicles, where for each vehicle
the initial conditions x0, desired speed vd[m/s], actuation limits

¯
u, ū[m/s2] and objective

function weights Q,R, are all drawn from the uniform distribution on the ranges given in
Table 5.1. Other relevant parameters that are set to H = 10[m], K = 100, ∆t = 0.1[s],
ε > 0.01[m/s], P = 15 and J = 10. Given a scenario instance, the exact problem (5.6)
is solved first, whereafter the approximate algorithm runs only if 1) a feasible solution to
(5.6) exists, and 2) the solution is non-trivial (i.e. the solution requires some adaptation to
avoid collisions). The 1 + N(J + 2) linear programs of Step 1 and N(J + P + 1) quadratic
programs of Steps 1 and 3, as well as the MIQPB’s (5.6),(4.3), are solved using CPLEX,
whereas solutions to the N semi definite programs of Step 2 are obtained using SDPT3 [12]
through CVX [13].

p0 v0
¯
u ū vd Q R

min -100 30 -3 1 30 1 1
max -50 90 -1 3 90 10 10

Table 5.1: Ranges for the vehicles parameters in the simulation, note that x0 = [p0, v0]T .

5.5 Results

The following results were obtained from 1000 instances drawn from the scenario envelope.
The running time performance recorded is given in Table 5.2, where the comparison is
made between the parts of the solutions that by necessity must be at least coordinated
centrally, i.e., the entire (2.6) and (3.3a) for the exact and approximate solutions respectively.
The proposed algorithms performance in terms of sub-optimality is shown in Fig. 5.1,
computed as (Ĵ∗ − J∗)/J∗, where J∗ and Ĵ∗ is the cost of the exact and approximate
solution respectively. Furthermore, it is noted that in 9 of the realizations (≈ 1%), a feasible
solution existed to (2.6) but not to (3.3a), an effect of the conservativeness introduced by
the approximation as discussed in Remark 1. An example of the resulting time-position
trajectories is given in Fig. 5.2.

Mean s
Exact solution, (2.6) 10.14 [s] 24.067 [s]

Approximation, Step 2, (3.3a) 0.043 [s] 0.022 [s]

Table 5.2: Statistics on time performance as reported by MIQPB solver over the examined 1000 instances,
where s is the empirical standard deviation. The compared MBIQP’s (2.6) and (3.3a) are solved with CPLEX
on a 1.9 GHz Intel i5 desktop with 8 GB RAM, running Windows 7.
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Figure 5.1: Distribution of the performance of the proposed algorithm in terms of sub-optimality for 1000
instances drawn from the scenario envelope with parameters according to Table 5.1
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Figure 5.2: Time-position plot of one realization from the envelope of scenarios described with parameters
according to Table 5.1. The grey band represents the intersection (equally large for all vehicles) and the
different coloured trajectories the position of the different vehicles, where solid lines correspond to exact
solutions and dashed lines to approximate. Note in particular the dark blue and orange trajectories, that
shows that the approximate solution has found a different crossing order than the direct.



6 Discussion

Although both direct solution to (2.6) and the proposed approximation scheme has expo-
nential worst time complexity, the difference in practice is clearly substantial (c.f. Table
5.2). This is a natural consequence of the large decrease in problem size from (2.6) to (3.3a).
Note in particular that neither the dynamics nor the discrete time horizon has any effect on
the size of the actual coordination problem, enabling the use of arbitrary large models and
horizons. The computational effort is instead largely moved to Steps 1 and 3 of the approxi-
mation procedure, which can be computed a-priori and retrieved from memory, or in parallel
(i.e. on-board the different vehicles). The price paid is sub-optimality, which is directly de-
pendent on the size of Ŝei (x0,i)\Sei (x0,i), Sei (x0,i)\Ŝei (x0,i), and on the quality of the F̂i(τi, ξi)
fit. Consequently, other choices of e.g. li(τi), ui(τi, ξi) than affine functions could increase the
performance of the approximation. However, it is worth emphasizing that even though the
approximations are constructed with simple functions, the algorithm gives results below 20%
suboptimality in around 85 % of the realizations. Furthermore, the proposed method offers
a natural coding of the basic components of cooperative decision making; the options of each
participant (Ŝei (x0,i)) and the associated preferences (F̂i(τi, ξi)). The compact representation
has beneficial consequences also for the design and evaluation of the associated communi-
cation system, as the information exchange needed is small and performance requirements
can be derived easily. Finally, the set Si(x0,i) and cost function Fi(τi, ξi) presented in this
report can be viewed as the result of a multi parametric program (MPP). Although a rich
theory exists for standard linear and quadratic MPP’s, problem (3.3b) differs fundamentally
in that the parameters [τi, ξi] enters the formulation in a non-standard fashion.

7 Conclusions

In this report, we have presented an algorithm for approximate solution to the intersection
problem for autonomous vehicles. In our algorithm, the problem is parametrized with the in-
tersection entry and exit times, and given a hierarchical structure with a central optimization-
based coordinator. The influence of the individual vehicle dynamics are condensed and
approximatively represented with simple expressions. The main benefits of the presented
scheme are: 1) the near-optimality and dynamic feasibility of the obtained solutions, 2) the
ability to use objectives conditioned on the individual vehicle states (energy usage etc.), 3)
a significant reduction of the computational demands on the central unit, and 4) a low and
predictable demand on the communication system, resulting from the compact representa-
tion of each vehicles possibilities and preferences. In future work, we intend to investigate
the closed loop behaviour of the proposed algorithm, the influence of communication related
uncertainties (packet drops etc.) as well as further reductions in complexity.
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