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Unintended Lane-Departure Detection
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Abstract—Advanced driver assistance systems have been an
active research topic for decades, for which many approaches
have been developed not only to reduce the number of traffic
accidents but also to increase the driver’s comfort. Among the
many different solutions proposed, learning-based prediction
approaches have gained considerable attention in recent years.
Within this scope, this work focuses on the implementation
aspects of a linear learning-based regression model for detecting
unintended lane-departures, where the goal is to achieve a
prediction model with good predictive performance while keeping
the computational complexity as low as possible. Aspects under
consideration include input signal selection and down-sampling.
The linear prediction model is analyzed using a real world
data set, and benchmarked against a kinematic constant velocity
model and a non-linear regression model. The results show that
the linear regression model has a significantly higher prediction
performance when compared to a kinematic model. It is also
shown that the predictive performance remains comparable to
the more complex nonlinear regression model, even though the
computational complexity of the linear model is significantly
lower.

Index Terms—Threat-assessment algorithms, decision-making
methods, intelligent vehicles, active safety systems.

I. INTRODUCTION

Every year, over 1.2 million fatalities are caused by traffic
accidents around the world. While one could think that the
majority of these causalities is due to faulty roads or malfunc-
tioning vehicles, an analysis on traffic accidents in the US
indicates that the human error is associated with up to 99%
of the traffic accidents [1]. In this context, the human error
accounts for errors made by the drivers such as inattentiveness,
reckless driving and drowsiness.

To cope with the human error problems, different Advanced
Driver Assistance System (ADAS) have been proposed in
recent years. However, designing a well-functioning ADAS is
a non-trivial task since it has to deal with various situations,
road conditions and driving styles [2]. Moreover, a vehicle in
motion obeys to the laws of dynamics, implying that a warning
or an automated assistance maneuver must be activated before
the traffic situation has reached the point of no return. Hence,
predicting the future driving situation, often referred to as
Threat Assessment (TA), is vital in the context of Collision
Avoidance Systems (CAS). A well functioning TA method
must therefore be robust to variations in the scenario, and
particularly with respect to different drivers’ behavior. To deal
with such problems, many different TA methods have been
proposed and evaluated over the years, e.g., methods based on

kinematics, optimization or probabilistic methods. A thorough
literature review on threat assessment techniques for CAS is
found in [3].

Fuelled by an increasing general interest in artificial in-
telligence techniques, a lot of attention has been given to
machine-learning approaches that leverage large quantities of
real-world data. Some works are based on end-to-end learning,
see e.g. [4], where frames from a video camera stream and
in-vehicle measurements are used to train a Long Short-Term
Memory (LSTM) network, in combination with a convolu-
tional network, to predict the future driver actions. A similar
approach, using only camera frames as an input, is found
in [5], where a combination of a convolutional Long Short-
Term Memory (conv-LSTM) network and a spatio-temporal
network is used to predict the future steering wheel angle.
Several other works focus on the threat assessment problem
by using time series data. For example, in [6] the motion
of surrounding vehicles are predicted, with the corresponding
uncertainty, using a deep ensemble of Recurrent Neural Net-
works (RNN), where the paths are expressed as third order
polynomials. A similar approach is used in [7], where the
motion of surrounding vehicles are predicted using a hybrid
architecture based on a Feed-Forward Neural Network (FFNN)
and an LSTM network. In [8], a Deep Kinematic Model
(DKM), based on an LSTM network architecture, is used to
predict kinematically feasible motion profiles of surrounding
vehicles. The feasibility is guaranteed by replacing the output-
layer with a kinematic output-layer, which restricts the future
states of the path to obey a kinematic vehicle model. A similar
problem is addressed in [9], where the ego-vehicle’s path is
predicted using a CNN-LSTM based network architecture. The
benchmark results indicate a superior predictive performance,
but the prediction model is conditioned on the presence of a
fixed number of surrounding vehicles, which is a fundamental
limitation. An Ensemble of Bi-directional Recurrent Neural
Networks (EBiRNN) is used in [10] to predict intended lane
changes of the ego-vehicle. Despite the robustness of an
ensemble based network architecture, the EBiRNN is just
slightly better performing than a standard, fully connected
Feed-Forward Neural Network (FFNN). On a complementary
problem, a Multilayer Perceptron (MLP) is used in [11] to
predict unintended lane departures, where it is shown that an
MLP has superior performance when compared to a kinematic
prediction model, at the cost of increased computational de-
mands.

While accurate predictions are a straightforward require-
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Fig. 1. System overview and available signals in the data-set. The lane markers are represented by a third order polynomial, p�, where � is a wild card for
left and right. The polynomials are valid for a range of view, rw�, determined by the vision system. The vehicles dynamics are represented by the yawrate ω,
front wheel angle δ, and longitudinal velocity v. The future path of the vehicle, h time steps ahead, is represented as the distance to the lane marker d�t+h.

ment for any safety related system, computational efficiency is
also of particular importance in the automotive industry. The
computational efficiency of an algorithm, determined by its
time complexity, is proportional to the number of operations,
and thereby also to the runtime needed for the computation
of the output of the prediction model, see [12] and [13] for
a detailed introduction to computational efficiency. Despite
the general belief of extended computation capabilities in
the most recent vehicles [14], the computational power on
board is normally restricted. It is therefore of great importance
that any threat assessment method is computationally efficient
to be able to run in real-time. However, advanced network
architectures, such as networks based on recurrent layers or
ensembles of networks, tend to be computationally demanding
[10]. In order to justify the increase in cost for higher
computational power, it is important that a computationally
demanding prediction model is significantly better in terms of
predictive performance.

It is precisely this trade-off between predictive performance
and computational complexity that this work is focusing on.
We will build upon a previous work by the same group of
researchers [15], that explores a Multiple Linear Regression
(MLR) prediction model for the detection of unintended lane-
departures. Despite the simplistic model architecture and the
small number of model parameters, the linear regression model
showed promising results regarding the predictive perfor-
mance. In this new work, the MLR’s predictive performance,
used in the application of Lane Keeping Assist (LKA), is
analysed with respect to the selection of input signals and
down-sampling rate, for prediction horizons between 0.5 and
1.75 s. The performance is benchmarked against a kinematic
Constant Velocity (CV) model and a Multiple Non-Linear
Regression (MNLR) model, using a real world data set, which
is derived from highway roads driving. We will show that the
MLR is significantly better compared to the CV model and
almost as good as the MNLR model in terms of predictive
performance. However, the MLR model has significantly lower
time complexity when compared to the MNLR model. Hence,
the MLR seems to be a good trade-off between real-time and
predictive performance.

The main contributions of this work are:
• A sensitivity analysis on how the selection of input

signals affects the MLR model’s predictive performance.
• A detailed benchmark against a kinematic model and a

MNLR model using a real world data set.
• Insights on how the parameterization of the learning-

based prediction models affects the computational com-
plexity in runtime.

• A detailed study of the input signals’ frequency charac-
teristics and empirical distributions.

The paper is organized as follows. Sec. II covers an intro-
duction to lane keeping assist systems. The problem statement
and the prediction models used for threat assessment are
presented in Sec. III, followed by an introduction to the
data set in Sec. IV. Moreover, Sec. V elaborates on the
implementation aspects, while Sec. VI presents the results and
the analysis. Finally, the conclusions are given in Sec. VII.

II. LANE KEEPING ASSIST

In general words, a LKA system aims to prevent lane
departures, using a prediction model designed to foresee the
vehicle’s future path. Should the vehicle and it’s occupants
be at risk, an automatic steering maneuver is to be triggered,
leading the vehicle towards the center of the ego lane. The ac-
curacy of the future path predictions is crucial for the system’s
effectiveness: if prediction errors are made, either actual lane
departures go undetected, which compromises the vehicle’s
and it’s occupants safety, or unnecessary interventions are
performed, ultimately disturbing or annoying the driver. All
these aspects highlight the essential nature of TA within an
LKA system. In the remaining of the paper, the TA part of
the LKA system is referred to as the prediction model.

An illustration of the considered vehicle system is given in
Fig. 1. Given in-vehicle measurements, the underlying idea of
the TA method is to predict, point-wise at the time instance
t + h, the relative distance between the vehicle and the left
and right side lane markers dlt+h and drt+h, respectively. An
activation of an automatic steering maneuver is triggered when
either the predictions d̂lt+h ≤ τ or d̂rt+h ≤ τ is true, i.e.,
whenever a lane departure is predicted. The parameter τ is a
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design parameter related to how close to the lane marking an
activation should be triggered, where τ = 0 means that the
vehicle reaches exactly the lane marking.

The in-vehicle measurements are the yaw rate denoted
by ωt, the front wheel angle denoted by δt and the longitudinal
velocity denoted by vlongt . The geometry of the lane markings
relative to the ego-vehicle, as illustrated in Fig. 1, is captured
by a forward looking vision system, that also includes an esti-
mation software. Here, plt and prt denote the approximate lane
marker polynomials on the left and right side, respectively.
They can generically be written as:

p�t (x) = a�0,t + a�1,tx+ a�2,tx
2 + a�3,tx

3, (1)

where x is the longitudinal distance, t the time instance, and
the � symbol a wildcard indicating the side of the vehicle.
The vision system is also estimating the range of view rw�

t ,
which is the longitudinal distance for which the polynomials
are considered valid by the sensor.

III. MOTION PREDICTION MODELS

This section focuses on prediction models that could be
used for TA purposes. First, an introduction to multi-step
predictions and sparse sampling of time series is provided.
Second, the computational aspect of prediction models is
discussed. Third, a linear regression-based prediction model,
analysed later in this paper, is also described. Last, a non-
linear regression model and a simpler kinematic model, to be
used for benchmark purposes, are also presented.

A. Multi-step prediction and sparse sampling

Define a sampled time series as a sequence of states Yt,
ordered by time instant t ∈ N, as:

Yt = [yt,1, yt,2, . . . , yt,K ]ᵀ, (2)

where yt,k, k ∈ [1,K], denotes the k : th signal in the
time series and ᵀ the matrix transpose operator. Notation-
wise, the time series is called univariate if K = 1 and
multivariate if K > 1, i.e., a vector valued time series. The
time series is typically determined by observations from an
unknown underlying process that exhibits random properties.
Assume that the time series is derived from an auto-regressive
process [16]. To be precise, let the state Yt+1 be derived as:

Yt+1 = g(Yt, Yt−1, ..., Yt−p−1) +Wt, (3)

where g is an arbitrary and unknown function and p ∈ N
determines the number of samples used in the process. The
process is driven by a white noise Wt ∈ RK , with E[Wt] = 0,
E[WtW

ᵀ
t ] = Σ ∈ RK×K and E[WtW

ᵀ
s ] = 0 for t 6= s. Hence,

each state in the time series is a function of old samples, in a
consecutive order and with a uniform sample rate determined
by the sample time Ts.

A time series prediction model is used to estimate the future
state Ŷt+h of the series, where h indicates the number of future
steps, based on state observations up to t:

Ŷt+h = ĝh(Yt, Yt−1, ..., Yt−p−1). (4)

For the sake of the clarity of the notation, note that the
symbol ˆ will generally denote the predictive instance of a
given variable throughout the remaining of the paper.

The h-step prediction in (4) can then be achieved by using
either a direct or a recursive approach [17], [18]. A direct
prediction model predicts the t+ h state in one step, while a
recursive approach is based on a 1-step prediction model that
is used, recursively, forward in time so to reach the t+h state.
However, while the recursive approach gives a proper path in
the interval [t, t + h], it is h times heavier to compute when
compared to the direct model. If only the t + h state is of
interest, as for instance in the LKA problem, the usage of the
direct approach therefore leads to a significant reduction in
the computational burden. Fortunately, in terms of predictive
performance, both the approaches have been shown to give
similar performance for linear univariate prediction models
and on various data sets, see [17].

Another important aspect is that the time series might be
over-sampled. This implies that the difference between two
consecutive samples is very small, which may complicate
the distinction between the contributions from the signal and
the embedded noise. If the signals in the time series are
sufficiently filtered, it is possible to down-sample the time
series without loosing any valuable information as long as
the Nyquist sampling theorem is satisfied. A proper down-
sampling increases the difference in magnitude between con-
secutive samples, therefore reducing the risk of fitting to the
noise when estimating the model coefficients [19]. Define the
time instance set Γ as:

Γ = {γ1, γ2, ... , γd}, (5)

consisting of unique, non-negative sample offsets that deter-
mine which old samples should be used as inputs to the
model. Using the time instance set (5), the h-step prediction
problem (4) can now be formulated as:

Ŷt+h = ĝΓ,h(Yt−γ1 , Yt−γ2 , ..., Yt−γd). (6)

Note that the prediction model formulation in (6) is, without
loss of generality, an extension of the regular auto-regressive
prediction model where the introduced offsets allow for sparse
sampling among the observed states. Moreover, the modified
prediction model using the sparse sampling technique is able
to down-sample the time series in real time, while maintaining
the original prediction frequency fs.

In some cases, however, one may not be interested in
predicting all signals ŷt+h,k in Ŷt+h, or some of the observed
signals in Yr, i.e., for r ≤ t, might be redundant and
not contributing to the model’s predictive performance. All
such signals can therefore be dismissed, and the prediction
model (6) reformulated in order to predict specific signals in
the time series, denoted by T̂t+h ⊆ Ŷt+h, such that:

T̂t+h = f̂Γ,Ψ,h(YΨ,t−γ1 , YΨ,t−γ2 , ..., YΨ,t−γd), (7)

where Ψ denotes the signal selection set, i.e., a set indicating
the Q ≤ K signals that should be used from the Yt vector
such that YΨ,t ⊆ Yt. Note that the prediction model (7) has
two hyperparameters: (i) the time instance set Γ and (ii) the



4

signal selection set Ψ. As stated in Sec. III-A, the observed
time series (3) is driven by an unknown function g, with the
unknown order p. Hence, choosing a model structure, with
the corresponding hyperparameters, for the prediction model
f̂Γ,Ψ,h, is therefore not straightforward.

B. Time complexity

As emphasized in Sec. I, the runtime properties of the
prediction model is an important aspect for the considered
application. The running time of an algorithm is a function
of the number of operations and of the time duration of each
operation needed to compute the output. However, the running
time may vary depending on the hardware, and it is therefore
common to abstract upon the running time, typically referred
to as analyzing the algorithm’s time complexity [20]. A forward
pass of a (linear) neural network is dominated by summation
and multiplication operations. Conceptually for floating-point
operations, multiplications are harder to perform than sum-
mations. For example, a CPU based on the Intel Silvermont
architecture is needing 66% more clock cycles to perform a
multiplication operation than an addition operation [21]. Some
processors, that use specialized floating-point units (FPU), e.g.,
CPUs based on the ARM Cortex-M4 architecture, can compute
summations and multiplications equally fast [22], but when
comparing the energy needed to perform the operations, it
has been concluded that a multiplication needs approximately
four times more energy than a summation [23]. To generalize
the analysis on runtime performance, the results should be
hardware-agnostic. The time complexity is therefore defined
as the number of multiplications made to compute the output
of the prediction model, since they are the most complex and
energy demanding operations to compute. Hence, summations
and other operations are associated with a zero cost. Recall that
the focus on the paper is on the models’ relative differences,
rather than the absolute true time complexity.

C. Prediction models based on multiple regression

Based on the generic formulation given in (7), two learning
based prediction models are implemented and evaluated in this
work: a multiple linear regression model and a multiple non-
linear regression model.

The MLR model is inspired by the Vector Auto-Regressive
(VAR) prediction model used in system identification liter-
ature to model linear dynamic processes [24] as well as in
econometrics [16]. The VAR model is known to perform well
on linear problems and is easy to design since there exists a
closed form solution.

The MLP is also straightforward to implement and easy
to train, while providing high predictive performance similar
to more advanced and computationally demanding non-linear
models, as highlighted in, for example, [7], [10]. Another
recent study [25], using the same data set as in this work,
also indicates that the MLP’s performance is even slightly
higher than the more advanced, uncertainty aware Gaussian
Multiple Layer Perceptron (GMLP) model. Hence, the MLP
will be considered as a representation of the state-of-the-art,

and used in this paper as a predictive performance upper-bound
indication for benchmark and analysis purposes.

1) Multiple linear regression prediction model :
A direct MLR prediction model with d = |Γ| number of

time instances, is defined as:

T̂t+h =

d∑
i=1

AiYΨ,t−γi , (8)

where the dependency on the d previous states is determined
by the weight-coefficients in the matrices:

Ai =


θ

(i)
1,1 . . . θ

(i)
1,Q

...
. . .

...
θ

(i)
R,1 . . . θ

(i)
R,Q

 , (9)

and R and Q are the number of signals in the prediction vector
T̂t+h and in the state vector YΨ,t−γi , respectively. The model’s
coefficients are estimated in closed form using a sequence of
samples from the time series. Rewrite (8) in matrix notation
such that:

T̂t+h = BZt, (10)

where,

B = [A1, . . . , Ad] ∈ RR×dQ, (11)

Zt = [Y ᵀ
Ψ,t−γ1 , . . . , Y

ᵀ
Ψ,t−γd ]ᵀ ∈ RdQ×1. (12)

Assuming there exists N observations of (Tt+h, Zt) yields:

T = [Tt+h . . . Tt+N+h] ∈ RR×N , (13)

Z = [Zt, . . . , Zt+N ] ∈ RdQ×N . (14)

The model coefficients can now be found by solving the least
square (LS) problem:

arg min
B

1

N
||T −BZ||22, (15)

which has the optimal closed form solution:

B∗ = T Zᵀ(ZZᵀ)−1. (16)

As defined in Sec. III-B, the time complexity of the MLR is
determined by the number of multiplication operations needed
for a forward pass. This yields:

TC = dQR, (17)

or, in words, defined as the product of the number of time
instances, the number of signals and the number of outputs.

2) Multiple non-linear regression prediction model: The
MNLR prediction model is, as mentioned before, based on a
Multilayer Perceptron model. The MLP model originates from
the concept of Feed-Forward artificial Neural Network [26],
consisting of an input layer, followed by a number of fully
connected hidden layers, and a final output layer. Since the
MLP is fully connected, the i : th neuron in the hidden layer
L is using a linear combination of the neuron outputs of the
previous layer L− 1:

sLi =

M∑
j=1

wLi,jo
L−1
j , (18)
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where wLi,j denotes the weighting parameter for the i : th
neuron in layer L on the j : th neuron in hidden layer L− 1.
A neuron’s output is then given by:

oLi = Υ(sLi ), (19)

where Υ is the activation function that operates on the scalar
input. The activation function provides non-linearity to the
model, where a classical choice is the sigmoid function:

Υ(x) =
1

1 + e−x
. (20)

The sigmoid function has a consistent derivative and is thereby
suitable for the back-propagation training algorithm [27]. On
the other hand, it is known to occasionally cause a phe-
nomenon called the vanishing gradient problem. The phenom-
ena, which is especially visible for deep MLPs with many
hidden layers [28], can prevent the back-propagation algorithm
from updating the weights. To avoid this, the Rectified Linear
activation function (ReLu) was introduced in [29]. It is worth
mentioning that empirical testing showed no significant differ-
ence while using a sigmoid function or a ReLu, and therefore
the sigmoid function was used in this work.

The time complexity, expressed as the number of multipli-
cations needed for computing the output of an L hidden layers
MLP, is given as:

TC = dQM + (L− 1)M2 +MR, (21)

where M is the number of neurons per hidden layer.

D. Kinematic prediction model

In the literature, there exist different types of kinematic
models. Among the most popular is the Constant lateral
Velocity (CV) model, which has its strength when the road
is fairly straight and where the driver is not driving in a
“sporty“ manner [30]. Other models such as the Constant
Turn-Rate and Velocity (CTRV) model or a Constant Turn-
Rate and Acceleration (CTRA) model are preferably used in
situations where the vehicle is turning, i.e., on curvy roads,
see [30]. However, such models assume that the turn rate over
the prediction horizon is constant, which is unlikely on straight
roads. Additionally, the turn-rate, in this paper denoted as the
yaw-rate signal ωt, is hard to be precisely measured given
the fact that it is easily affected by external sources of noise,
such as vibrations. As a consequence, when used on straight
roads, it tends to make, quite frequently, predictions where the
vehicle is falsely departing from lane.

In the scope of the LKA system considered in this paper,
the Operational Design Domain (ODD) is set to driving
on highway roads, i.e., roads that are fairly straight. The
CV model computes the future distance d�t+h based on the
assumption that the lateral velocity remains constant over the
prediction horizon. The model is derived by using the heading
angle:

ψ ≈ d

dx
p�t (0), (22)

which is approximated, due to the law of small angles, as
the first derivative of the lane marker polynomial. The lateral
speed is then given by:

v�,latt = vlongt sinψ. (23)

The relative lateral distance, h steps ahead, is finally given as:

d�t+h = p�t (0) + v�,latt hTs. (24)

It is worth mentioning that, from a time complexity per-
spective, the constant velocity (CV) model is a very effective
prediction model for ADAS applications. The prediction is
computed by a few multiplication operations, which makes
it computationally competitive, when compared to many of
the alternative prediction methods, and especially data driven
approaches. The CV model is also commonly used, at least
partly, in performance benchmarks, see [31], [32] and [33].
Hence, the CV model will be used later for benchmark
purposes, as a lower bound in terms of time complexity and
predictive performance.

IV. DATA SET

In this work, a large set of real-world data is used for the
validation of the proposed motion prediction models. The data
set has been collected by professional drivers driving a fleet
of test-vehicles under different weather conditions, road types
and countries such as Sweden, Germany and China. All signals
have been retrieved via the vehicle CAN-bus, and each signal
is sampled with a sampling frequency of fs = 1/Ts = 40 Hz.

A. Data selection

The quality of the signals in the data set varies with respect
to different factors such as weather conditions, worn road
markers, etc. As some of the threat assessment methods used
in this paper are data-driven, it is of importance that the
considered data is consistent and representative of the chosen
ODD, i.e., that it properly reflects lane departure situations on
highway roads, and therefore effectively excluding situations
such as regular lane-changes, queuing, forks, merges and
roundabouts.

Let the extracted data set be a subset of the real world data
set, where each data sample fulfills the following criteria:

• the right and left lane markers are present;
• the lane width is not wider than 4 m;
• the curve radius of the road is larger than 250 m;
• the longitudinal velocity is higher than 60 km/h;
• no turn indicator is used when departing from lane;
• no intended lane change is performed within a 4 s period

after a lane departure.

B. Data annotation

The annotation of the extracted data set is straightforward
since each signal is a time series. Given a time instant t and a
prediction horizon of H seconds, the future lateral distance to
the lane marker is simply given by the actual value of d�t+h =
p�t+h(0) = a�0,t+h, where h = H/Ts. Hence,

Tt+h =

[
dlt+h
drt+h

]
. (25)
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The annotated data is divided into a non-event data set |B|=
3000 and an event data set |C|= 12645, where | | denotes
the number of time series sequences in the set. The non-event
set contains 11 seconds long time series sequences of normal
driving in lane, i.e., where no lane departures occur, and is
used to evaluate the false-positive performance. The event set
contains time series sequences where each time series ends
with a lane departure, i.e., the shortest distance among d�t+h
is equal to 0. The length of the sequences in the event set, in
terms of number of samples before the departure occurs, is a
design parameter affecting the balance between normal driving
and driving leading to a lane departure. The length used in this
work is proportional to the prediction horizon, where empirical
testing concluded that a length of 4H seconds produces a fair
trade-off between normal driving and lane departure driving.
The event set is divided into an estimation set |Ce|= 10645
used for model coefficients estimation, a calibration set |Cc|=
1000 used for performance calibration and a test set |Ct|=
1000 used for testing the model performance. Note that Ce, Cc
and Ct are mutually exclusive, and that all data samples have
been standardized.

V. IMPLEMENTATION AND SETUP

The prediction models are implemented in Python code,
where the MLR model is estimated using the algebraic closed
form solution given in (16) and the MNLR is trained using
the Keras framework [34] together with TensorFlow [35]. The
MNLR model consists of L = 3 fully connected hidden
layers, with M = 40 neurons in each layer and an output
layer with R = 2 linear neurons, one for each side of the
vehicle. The MNLR model’s architecture is based on the
authors’ own experience from the implementation and testing
phase, where the number of neurons per hidden layer was
found by a simple line search, similar to the method used in
[36] and [37], by increasing the number of neurons in steps
of 10. The networks were trained using early stopping [38]
and a first-order, gradient-based optimizer for stochastic loss
functions, called the ADAM optimizer [39], that minimizes
the prediction error in terms of Mean Squared Error (MSE).
From the preliminary evaluation, it was evident that the MSE
did not improve for M values larger than 40. Regarding the
number of hidden layers, it has been shown that, at least
theoretically, a feed-forward neural network consisting of only
one hidden layer is able to estimate any nonlinear function, if
the number of neurons are sufficiently many [40]. However,
some problems may benefit from deeper networks, e.g., when
the problem is believed to rely on a sequence of steps, in the
sense that a part of the problem is solved in the first hidden
layer and its output is used in the subsequent layer as input to
solve the next part of the problem [26]. Hence, in general,
it is useful to have a deeper network with more than one
hidden layer [26], and consequently a network architecture
with several hidden layers has been chosen in this work.

The hardware used for numerical computations is a desktop
computer equipped with a 24 core CPU, 192 GB RAM and
Windows 10. The closed form solution is computationally
efficient (the computation time is less than 5 s per model),

TABLE I
SIGNAL SELECTION SETS

al0,t a
r
0,t a

l
1,t a

r
1,t δt ωt al2,t a

r
2,t a

l
3,t a

r
3,t rw

l
t rw

r
t vt

Ψ0 x x
Ψ1 x x x x
Ψ2 x x x x x
Ψ3 x x x x x x
Ψ4 x x x x x x x x
Ψ5 x x x x x x x x x x
Ψ6 x x x x x x x x x x x x
Ψ7 x x x x x x x x x x x x x

while the numerical solution for the MNLR takes significantly
more time (approximately 2 hours per model). The CV model
is also implemented in Python, and it requires no training as
it is parameter-less.

A. Prediction horizons

The length of the prediction horizon is related to how
much time is needed for an automated steering maneuver to
avoid a future lane departure, denoted as the Time Duration
of Maneuver (TDM). The Time to Lane Crossing (TLC) is
a metric for how much time remains before the vehicle is
departing from the lane [32], [41]. The relationship between
TLC and the TDM is given as:

TDM =
d�t − 0

(
v�,lat
t −0

2 )
= 2× TLC, (26)

where an automated maneuver is mitigating a lane-departure
by controlling the vehicle towards a zero distance to the lane
marker and zero heading. Based on empirical experience, the
TDM is typically no longer than 3.5 s, which corresponds to a
TLC = 1.75 s. Hence, TLC value sets the requirement for the
prediction horizon, and ultimately the resulting TDM values 1.

Both the MLR and the MNLR prediction models are im-
plemented for six different prediction horizon values, namely
[0.5, 0.75, 1, 1.25, 1.5, 1.75] seconds. The lowest prediction
horizon (0.5 s), though maybe too short for practical use,
remains pertinent for the relative performance analysis.

B. Signal selection

Selecting the input signals in Ψ, i.e., which signals should
be included in f̂Γ,h, is a trade-off between the model precision
and the computational complexity, where more information
may give a better precision but increases the computational
burden. However, it is not guaranteed that more input signals
yield an increased precision. Redundant or contradictory sig-
nals might reduce the effectiveness of the model training and
give a poor generalization capabilities on new data.

Different combinations of signals have been gathered in
signal selection sets, see Tab. I. The simplest signal selection
set Ψ0, includes only the distance to the two sides’ lane-
markers, while the most rich set Ψ7 contains all available
signals. The sets grow incrementally with one signal type at

1Remark that the required maneuver time, in the general case, is dependent
on how strong the vehicle’s steering actuator is and the safety constraints on
the system.
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TABLE II
TIME INSTANCE SETS

Sample rate Sample offsets |Γ|
Γ0 40 Hz 0, 1, 2, 3, 4, ..., 37, 38, 39 40
Γ1 20 Hz 0, 2, 4, 6, 8, ..., 36, 38, 40 21
Γ2 10 Hz 0, 4, 8, 12, ..., 32, 36, 40 11
Γ3 5 Hz 0, 8, 16, 24, 32, 40 6
Γ4 2.5 Hz 0, 16, 32 3
Γ5 1.25 Hz 0, 32 2
Γ6 0, 1, 2, 3, 5, 9, 15, 24, 39 9
Γ7 40 Hz 0, 1, 2 3

the time, in order to be able to test the importance of each
individual signal in a structured way.

As mentioned in Sec III-A, a consecutive sequence of old
samples of the signals are typically used as inputs to the
model. However, the notion of sparse sampling introduced
in (6) allows for an arbitrarily sequence of old samples,
which can be used for down-sampling. The down-sampling
is made by consecutive divisions by two, yielding different
time instance sets, denoted Γ0 to Γ5, as shown in Tab. II,
where the lowest sampling frequency is 1.25 Hz. In addition,
Γ6 corresponds to a logarithmic sampling, which showed
good performance in a previous study [15]. Observe that the
logarithmic sampling is dense for the most recent samples
and sparse for the older samples. The intuition behind Γ6
is that more recent information should better describe the
current situation, while the old information can contribute with
the long-term trend. Hence, the logarithmic pattern can be
viewed as a way to weight between recent and old information.
Remark that Γ0 − Γ6 use up to approximately 1 s old data
samples, which has been shown to be a preferable historic
depth according to the findings in [15]. Finally, the last pattern
Γ7 uses only the 3 most recent samples to illustrate how the
performance is affected when only the most recent data is
taken into consideration.

The time complexity of the MLR and the MNLR model, as
defined in (17) and (21), respectively, is presented in Tab. III.
From the table one can observe significantly higher values of
the time complexity for the MLNR model, when compared to
the MLR model. It is also evident that the number of inputs
should be chosen with care in order to potentially avoid high
time complexity, especially for the MNLR model.

VI. RESULTS AND ANALYSIS

This section is divided in three parts. In Sec. VI-A, the
data properties are analyzed, as an important basis for the
latter discussion on how signals selection and down-sampling
affect the predictive performance of the different models. In
Sec. VI-B, the predictive performance is analyzed in terms
of MSE. Finally, Sec. VI-C analyzes the performance in a
LKA application. More precisely, the MSE analysis is used to
select sufficient input signals and a proper down-sampling rate
for the prediction model. The resulting models from the MSE
analysis are then used in the analysis of the LKA application.
Remark that both the MSE and LKA performance analysis
are important to this study: the MSE, based on sample-wise
evaluation, indicates how well the model performs in average

TABLE III
TIME COMPLEXITY FOR COMBINATIONS OF TIME INSTANCE AND SIGNAL

SELECTION SET.

Ψ0 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7
MLR Γ0 160 320 400 480 640 800 960 1040

Γ1 84 168 210 252 336 420 504 546
Γ2 44 88 110 132 176 220 264 286
Γ3 24 48 60 72 96 120 144 156
Γ4 12 24 30 36 48 60 72 78
Γ5 8 16 20 24 32 40 48 52
Γ6 36 72 90 108 144 180 216 234
Γ7 12 24 30 36 48 60 72 78

MNLR Γ0 6480 9680 11280 12880 16080 19280 22480 24080
Γ1 4960 6640 7480 8320 10000 11680 13360 14200
Γ2 4160 5040 5480 5920 6800 7680 8560 9000
Γ3 3760 4240 4480 4720 5200 5680 6160 6400
Γ4 3520 3760 3880 4000 4240 4480 4720 4840
Γ5 3440 3600 3680 3760 3920 4080 4240 4320
Γ6 4000 4720 5080 5440 6160 6880 7600 7960
Γ7 3520 3760 3880 4000 4240 4480 4720 4840

for all driving data; the LKA analysis, focusing on the overall
scenario, indicates how well the system behaves when needed.

A. Data analysis

This section provides a detailed overview to the signals’
properties in terms of empirical distribution and frequency
content.

1) Empirical distributions: The empirical distribution of
the different signals is depicted in Fig. 2. As stated in
Sec. II, the road polynomial approximates the roads geometry
relatively the vehicle. Hence, the distance to the lane marker
at time t is given by p�t (0) = a�0,t. As seen in Fig. 2a, the
empirical distributions for the distance on the left and right
side are unimodal, non-symmetric and take values in between
−0.1 and 2 m. Furthermore, it can be observed that the density
around 0 is low, meaning that very little data exist for that
distance to the lane marker. Hence, a learning-based prediction
model need to learn how to predict small distances to the lane
marker mainly using data from the peak of the distribution.

Let the heading angle towards the lane marker be derived
by using the change rate of the distance, d

dxp
�
t (0) = a�1,t, as:

ψ� = tan−1 a�1,t, (27)

where ψ� ≈ a�1,t for low numerical values of the change
rate. Hence, the heading angle take values in the interval
[−0.03, 0.03] rads, which corresponds to ±1.7 degrees. Notice
that a heading angle of 1 degree and a speed of 90 km/h
yields a lateral velocity equal to 0.44 m/s. Moreover, the road
curvature can be computed as:

κ =

∥∥∥ d2

dx2 p
�
t (0)

∥∥∥
2(

1 + ( d
dxp

�
t (0))

2
) 3

2

≈
∥∥2a�2,t

∥∥
2
, (28)

which yields a road radius R = 1/κ. Looking now to the
distribution of the curvature in Fig. 2c, one can observe that it
is very dense for low values, which corresponds to a tendency
of having straight roads. Furthermore, the curvature’s change-
rate a�3,t has a unimodal and symmetric distribution, as seen
in Fig. 2d.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Histograms showing the statistical properties of: the coefficients of
the lane marker polynomials (a, b, c and d) and the range of view (e), for the
left (l) and right (r) side, as well as of the yawrate (f), the front wheel angle
(g) and the longitudinal velocity (h).

The distributions of the range of view rw�
t , presented in

Fig. 2e, differ significantly from the previous figures in terms
of the behavior of the peaks. To the left side, the peak is
located at 70 m while on the right side the peak is at 90 m.
This seems to indicate that the right hand side lane marker is
more visible to the camera sensor on average, which might be
explained by the assumption that the lane markers to the right
is less worn and more seldomly occluded by other vehicles.

Fig. 2f and in Fig. 2g show the distribution of the yaw
rate ωt and steering angle δt respectively. One can observe
rather symmetric distributions, though a small bias on the
steering angle distribution can be perceived, probably caused
by miss-calibration of the sensors.

Finally, Fig. 2h shows the distribution of the vehicle’s
speed vt. It shows the characteristics of a multimodal dis-
tribution, as a natural effect of driving on roads with different
speed limits.

2) Frequency analysis: The Power Spectrum Density
(PSD) is used to visualize the bandwidth wherein the signal
has power [42], and is presented in Fig. 3a. The discrete PSD
function is derived by averaging over an ensemble of 500

(a)

(b)

Fig. 3. Panel (a) depicts the normalized discrete power spectrum density
of the time series signals, while panel (b) is the cumulative power spectrum
density. The black dashed line indicates the 95% level.

PSDs, calculated from random time series sequences in the
estimation data, and all of equal length. For convenience, the
PSD is normalized such that the sum over all power equals
to 1. However, the signals may contain high frequency noise,
which would yield a very high bandwidth. In this work, the
bandwidth is defined as the frequency interval [−fb, fb] such
that the Cumulative sum over PSD (CPSD), given as:

CPSD =

fb∑
k=−fb

PSD(k), (29)

contains 95% of the total signal power given by the interval
[−∞,∞]. Fig. 3b shows the CPSD for all signals. One can
observe that the bandwidth of the velocity vt and range of view
rwt signals are approximately 0, which indicates that they
are almost constant within the 500 time series sequences, on
average. The higher order coefficients a1,t, a2,t, a3,t, together
with the steering wheel angle δt and the yaw rate ωt, have a
higher bandwidth, where the largest is 3.7 Hz for the yaw rate.
The distance to the line-marker a0,t is of special interest as it
is used as the ground truth in the annotation of the estimation
data. The a0,t signal has a low bandwidth of less than 0.1 Hz,
which means that it is changing slowly. From a prediction
model perspective, it is beneficial that the distance values
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Fig. 4. Heat map for the MLR model, representing the relative performance
for different combinations of signals and time instances used in the sampling.
Red and blue color indicate a high and low MSE value, respectively.

varies slowly, but nevertheless it remains challenging to predict
its future changes. Furthermore, one can also observe that the
signals have significant power within the frequency interval
[0, 4] Hz. Hence, in accordance with the Nyquist sampling
theorem, it should be possible to retrieve the signals using a
sample rate as low as 8 Hz without loss of information. The
power spectrums in Fig. 3a and Fig. 3b show that the signals’
power are very low for frequencies higher than 4 Hz, which
indicates that the signals are sufficiently low-pass filtered to
allow down-sampling without causing aliasing.

B. Model selection based on MSE

The goal of this section is to find suitable hyperparameters
of the learning-based models, i.e., the signal-selection set Ψ
and time instance set Γ. For that purpose, an exhaustive grid
search approach was used, spanning all combinations of the
signal-selection set (see Tab. I), the time instance set (see
Tab. II), and different prediction horizons values. The results
are given in Fig. 4 and Fig. 5, for the MLR and MNLR
model, respectively, and are presented in the form of a heat
map, where the blue cells correspond to lower MSE values.
One can see that the MNLR is over-fitting the training data

for the shorter prediction horizons 0.5 and 0.75, especially
when using only the distances to the lane markers (Ψ0) as
input signals. This is evident by the fact that the MNLR is
consistently performing worse than the MLR model for those
horizons. As stated in Sec. V-B, the signal selection set grows
incrementally with one new type of input signal for each new
configuration. Hence, one can see that the a�1, δ and a�2 signals
(in configurations Ψ1, Ψ2 and Ψ4) contribute with significant
improvements compared to only using the a�0 signals in Ψ0.
Adding more signals, Ψ5-Ψ7, yields no further improvement
for the MLR, but a small benefit could be seen for the MNLR.

Fig. 5. Heat map for the MNLR model, representing the relative performance
for different combinations of signals and time instances used in the sampling.
Red and blue color indicate a high and low MSE value, respectively.

In terms of time instances, the MLR model seems to be
insensitive to the down-sampling for sampling rates equal
or higher than 5 Hz (Γ3). The MNLR model shows similar
characteristics, excluding the results for 0.5 s prediction hori-
zon that is affected by the over-fitting, as mentioned before.
Comparing the results from the MLR and the MNLR model
shows that the MLR is a better choice for prediction horizons
up to 1 s, while the MNLR is better for prediction horizons
longer than 1.25 s. The logarithmic sampling used in Γ6 shows
similar performance as Γ2, but uses only 9 time instances
instead of 11. The consecutive and shallow sampling used in
Γ7 is under-performing when compare to the others.

Based on these results, and the findings in Sec. VI-A2, Γ3
seem to be the preferred choice of down-sampling rate, since
it provides approximately equal performances as the Γ0− Γ2
and Γ6, despite having a lower number of input signals. In
terms of signal-selection, Ψ4 is the preferred choice, since it
yields a competitive predictive performance while keeping the
complexity cost low, see Tab. III for details on complexity.

C. Performance analysis for LKA

The models’ predictive performance is further analyzed in
terms of the LKA application. The test data set Ct is used to
compute the True-Positive Rate (TPR), i.e., how many True-
Positive (TP) activations are triggered when needed. However,
even though the prediction model is trained on a specific
prediction horizon H , it is unlikely that the corresponding
triggering time on test data is identical to the designed predic-
tion horizon. Therefore, a TP is encountered if the prediction
model detects a true lane departure up to 2H seconds before
the departure takes place. The False-Positive Rate (FPR) is
computed using the non-event set B given τ , where an False-
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(a)

(b)

Fig. 6. The predictive performance in the LKA application is derived by
using the signal selection set Ψ4 and time instance set Γ3. The true positive
rate and the false positive rate are shown in panel (a) and (b), respectively.

Positive (FP) event is encountered if an unwanted activation
is triggered, i.e., any activation in the non-event set B.

However, a fair comparison between prediction models in
terms of TPR and FPR can only be achieved if they are tuned
to the same mean triggering time. Note that, for a perfect
prediction model, the mean triggering time, obtained for τ =
0, should be equal to H s. Unfortunately, in practice, there are
no such guarantees with respect to the mean triggering time.
However, the mean triggering time can be calibrated to t̄h = H
by adjusting the threshold τ . The calibration is performed for
all models using a small calibration data set Cc.

Based on the results of Sec. VI-B, the MLR and MNLR
models are used with the signal selection set Ψ4 and down-
sampling rate Γ3. Fig. 6 shows the performance in terms of
TPR and FPR for the MLR, MNLR and CV models, when
used in the LKA application. The relative performance of
the learning-based models, when compared to the CV model,
improves as the prediction horizon increases. For the shorter
prediction horizons 0.5−1 s, the performance is similar for the
MLR and MNLR, while the MNLR performs slightly better
for longer horizons. However, as seen in Tab. III, the MLR and
MNLR have a time complexity of 96 and 5200, respectively.
Hence, the improvement in performance, when using a MNLR

instead of a MLR, comes with the cost of higher computational
demands.

VII. CONCLUSIONS

This work addresses performance and implementation as-
pects of a multiple linear regression (MLR) model in the scope
of unintended lane-departure detection for automotive appli-
cations. Using a real world data set, the MLR is benchmarked
against a multiple non-linear regression (MNLR) model and
a kinematic, constant velocity model. The underlying di-
mensions of the analysis are the predictive performance and
the corresponding computational complexity. Aspects such as
input signal selection, down-sampling of the input data, as well
as model selection, are also discussed.

The results show that the MLR prediction model, despite
its moderately higher computational costs than the CV model,
largely outperforms the kinematic model. The results presented
also show that the MLR prediction model has approximately
the same performance as the MNLR model for prediction
horizons up to 1 s, and slightly reduced performance for longer
prediction horizons. However, considering the significantly
lower time complexity of the linear alternative, these results
seem to indicate that the linear model is a good choice if
the computational power is limited, offering a good trade-off
between predictive performance and time complexity.

Regarding the real world data, the results show that the
most important input signals are the road geometry and the
front wheel angle. The results indicate that the sampling
rate can be as low as 5 Hz without sacrificing the pre-
dictive performance of unintended lane-departures detection.
Furthermore, it is evident that the down-sampling significantly
reduces the computational complexity for both the MLR and
MNLR prediction model, which lowers the demand for fast
and expensive hardware for real-time computations.

Future work should analyze the MLR model’s performance
for different scenarios, such as collision detection with on-
coming traffic, for instance. Additionally, other sources of
information might be explored, such as driver monitoring
cameras or vehicle-to-vehicle (V2V) communication.
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