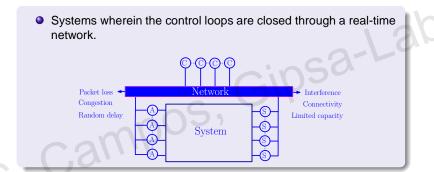
Improved Consensus Algorithms With Memory

Gabriel Rodrigues de Campos Alexandre Seuret

NeCS Team CNRS - GIPSA-Lab Automatic Control Department INRIA Rhône-Alpes

50th IEEE Conference on Decision and Control and European Control Conference

Networked Control Systems (NCS)

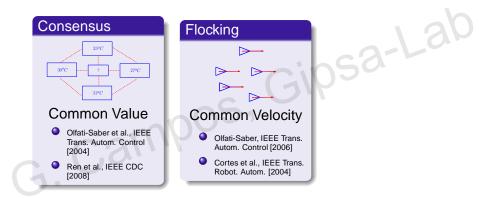


Defining feature

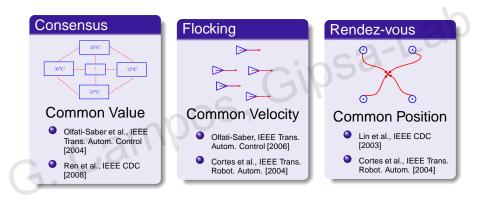
Control and feedback signals are exchanged among the system's components in the form of information packages through a network.

・ロト ・回ト ・ヨト ・ヨト

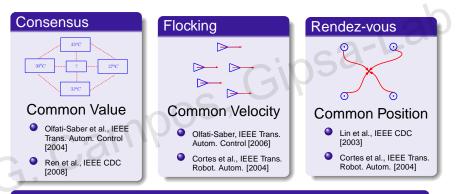
イロト イポト イヨト イヨト



イロト イロト イヨト イヨト



イロト イロト イヨト イヨト



Question

Is it possible to improve the convergence rate? And how?

イロン イロン イヨン イヨン

Content

- Problem Statement
- Model definition
- Improved behavior guarantees
- Stability analysis
- Examples
- Conclusions

sa-Lo

▲ 同 → ▲ 三

Consensus in multi-agent systems (MAS):

To reach an agreement regarding a certain quantity of interest that depends on the state of all agents under limited communication Applications: multi-robot systems, distributed estimation and filtering in networked systems.

where $L = \Delta - A$ is the Laplacian matrix, and A is the adjacency matrix.

< 同 > < ∃ >

Consider the classical simple integrator consensus algorithm

$$\begin{cases} \dot{x}_i(t) = u_i(t) \\ u_i(t) = \sum_{j \in \mathcal{N}_i} a_{ij}(x_j(t) - x_i(t)) \end{cases} \quad i \in \{1, \dots, N\},$$
(1)

or, expressed in another way,

$$\dot{\mathbf{x}}(t) = -L\mathbf{x}(t) , \qquad (2)$$

< 同 > < ∃ >

where x represents the vector containing the agents variables.

has be the classical simple integrator consensus algorithm

$$\begin{cases}
\dot{x}_i(t) = u_i(t) \\
u_i(t) = \sum_{j \in \mathscr{N}_i} a_{ij}(x_j(t) - x_i(t)) & i \in \{1, \dots, N\}, \\
\text{expressed in another way.}
\end{cases}$$
(1)

$$\dot{\mathbf{x}}(t) = -\mathbf{L}\mathbf{x}(t) , \qquad (2)$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

where x represents the vector containing the agents variables.

Remark:

Coi

or.

Convergence rate is related with the 2nd smallest eigenvalue of L, λ_2

Consider the classical simple integrator consensus algorithm

$$\begin{cases} \dot{x}_i(t) = u_i(t) \\ u_i(t) = \sum_{j \in \mathcal{N}_i} a_{ij}(x_j(t) - x_i(t)) \end{cases} \quad i \in \{1, \dots, N\}, \tag{1}$$

or, expressed in another way,

$$\kappa(t) = -L\kappa(t) , \qquad (2$$

where x represents the vector containing the agents variables.

Ś

Main Idea: Stabilizing Delay (Michiels et al.[2004])

Introduce *local memory* in the algorithm to improve convergence performances

Consider the classical simple integrator consensus algorithm

$$\begin{cases} \dot{x}_i(t) = u_i(t) \\ u_i(t) = \sum_{j \in \mathscr{N}_i} a_{ij}(x_j(t) - x_i(t)) \end{cases} \quad i \in \{1, \dots, N\},$$

or, expressed in another way,

$$\dot{\mathbf{x}}(t) = -L\mathbf{x}(t) , \qquad (2)$$

where x represents the vector containing the agents variables.

As previously in

Rodrigues de Campos et al., IFAC NecSys [2010] "Continuous-time double integrator consensus algorithms improved by an appropriate sampling"

(1)

Delayed Consensus Algorithms

The previous algorithm is modified into a new algorithm defined by

$$\dot{\mathbf{x}}(t) = -(\mathbf{L} + \delta \mathbf{A})\mathbf{x}(t) + \delta \mathbf{A}\mathbf{x}(t-\tau)$$

Note that if δ and/or τ are taken as zeros, then the classical algorithm is retrieved.

Remark:

Algorithm's convergence proprieties remain intact

(3)

Delayed Consensus Algorithms

The previous algorithm is modified into a new algorithm defined by

$$\dot{\mathbf{x}}(t) = -(\mathbf{L} + \delta \mathbf{A})\mathbf{x}(t) + \delta \mathbf{A}\mathbf{x}(t-\tau)$$

Note that if δ and/or τ are taken as zeros, then the classical algorithm is retrieved.

Remark:

Algorithm's convergence proprieties remain intact

Drawback:

 Large memory is needed in order to store all x values over the whole time window [t - τ, t]

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

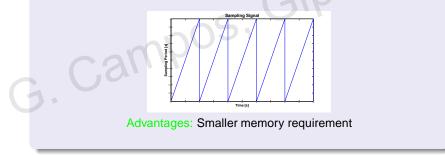
(3)

Sampling Delay (Fridman et al. [2004])

We will consider a sampling delay such that:

$$\tau(t) = t - t_k, \ t_k \le t < t_{k+1} \ ,$$

where the t_k 's corresponds to the sampling instants and $T = t_{k+1} - t_k$ is the sampling period.

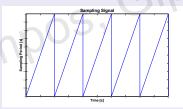


Sampling Delay (Fridman et al. [2004])

We will consider a sampling delay such that:

$$\tau(t) = t - t_k, \ t_k \le t < t_{k+1} \ ,$$

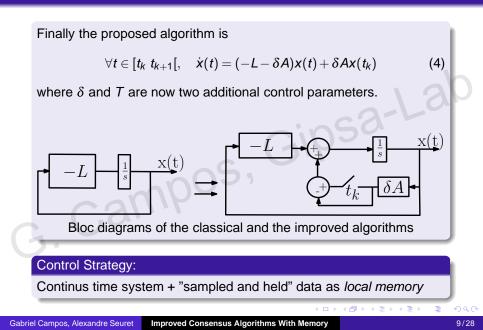
where the t_k 's corresponds to the sampling instants and $T = t_{k+1} - t_k$ is the sampling period.



Advantages: Smaller memory requirement Drawbacks: More dedicated stability analysis

< 🗇 >

- E - N



Consensus agreement:

Proof that the proposed algorithm achieve consensus

< ロ > < 同 > < 三 > < 三 >

Consensus agreement:

Proof that the proposed algorithm achieve consensus

Considering a performance optimisation:

Camp

Proposal of a method to choose appropriately the algorithm parameters δ and T for a given L

< 同 → < 三 →

Consensus agreement:

Proof that the proposed algorithm achieve consensus

Considering a performance optimisation:

Proposal of a method to choose appropriately the algorithm parameters δ and T for a given L

Stability:

Establishment of exponential stability conditions.

Definition: Let $\alpha > 0$ be some positive, constant, real number. The system is said to be exponentially stable with the decay rate α , or α -stable, if there exists a scalar $\beta \ge 1$ such that the solution $x(t; t_0, \phi)$ satisfies:

$$|\mathbf{x}(t; t_0, \phi)| \leq \beta |\phi|_{\tau} \mathbf{e}^{-lpha(t-t_0)}$$

Assumptions on the multi-agent set:

- A1. Communication graph with a directed spanning tree
- A2. Sampling process is periodic
- A3. All agents are synchronized and share the same clock
- A4. $L = \mu I A$ (Not restrictive)

7

< 17 ▶

Assumptions on the multi-agent set:

- A1. Communication graph with a directed spanning tree
- A2. Sampling process is periodic
- A3. All agents are synchronized and share the same clock
- A4. $L = \mu I A$ (Not restrictive)

Problems to be solved:

- P1. Theoretical guarantee of improved behavior
- P2. Analytic expression of the consensus point
- P3. Convergence to this point
- P4. Convergence rate to this point

Model Transformation

For sake of generalization, let μ be a positive scalar such that:

$$\sum_{j\in\mathcal{N}_i}a_{ij}=\mu,\quad i\in\{1,\ldots,N\}.$$

Is then possible to make a change of coordinates x = Wz such that

$$ULW = \begin{bmatrix} B & \vec{0} \\ \vec{0}^T & 0 \end{bmatrix}, \tag{5}$$

where $B \in \mathbb{R}^{x}$, and for graphs containing a directed spanning tree, $U = \begin{bmatrix} U_{1}^{T} & U_{2}^{T} \end{bmatrix}^{T} = W^{-1}$ and $U_{2} = (U)_{N}$ corresponds to the N^{th} line of U.

The consensus problem (4) can be rewritten using $z_1 \in \mathbb{R}^{N-1}$, $z_2 \in \mathbb{R}$ and the matrix *B* is given in (8):

$$\dot{z}_{1}(t) = (-B + \delta(B + \mu I))z_{1}(t) - \delta(B + \mu I)z_{1}(t_{k}), \qquad (6a)$$

$$\dot{z}_2(t) = -\mu z_2(t) + \mu z_2(t_k),$$
 (6b)

Model Transformation

The consensus problem (4) can be rewritten using $z_1 \in \mathbb{R}^{N-1}$, $z_2 \in \mathbb{R}$ and the matrix *B* is given in (8):

$$\dot{z}_{1}(t) = (-B + \delta(B + \mu I))z_{1}(t) - \delta(B + \mu I)z_{1}(t_{k}), \quad (7a)$$
$$\dot{z}_{2}(t) = -\mu z_{2}(t) + \mu z_{2}(t_{k}), \quad (7b)$$

Interpretation:

The sampled algorithm is decomposed into two components:

 z₁ is a vectorial component associated to non-zero eigenvalues that converge to zero.

< 同 > < ∃ >

Model Transformation

The consensus problem (4) can be rewritten using $z_1 \in \mathbb{R}^{N-1}$, $z_2 \in \mathbb{R}$ and the matrix *B* is given in (8):

$$\dot{z}_{1}(t) = (-B + \delta(B + \mu I))z_{1}(t) - \delta(B + \mu I)z_{1}(t_{k}), \quad (7a)$$
$$\dot{z}_{2}(t) = -\mu z_{2}(t) + \mu z_{2}(t_{k}), \quad (7b)$$

Interpretation:

The sampled algorithm is decomposed into two components:

- z₁ is a vectorial component associated to non-zero eigenvalues that converge to zero.
- *z*₂ is scalar component associated to the zero eigenvalue that converge to the initial positions average.

Proposition: For small values of δ and T convergence increases when compare with the trivial algorithm.

Let *B* be the diagonal matrix of the Laplacian matrix eigenvalues such that

$$B = \begin{bmatrix} -\lambda_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & -\lambda_N \end{bmatrix}.$$
 (8)

Proposition: For small values of δ and T convergence increases when compare with the trivial algorithm.

Let *B* be the diagonal matrix of the Laplacian matrix eigenvalues such that

$$\mathbf{S} = \begin{bmatrix} -\lambda_2 & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & -\lambda_N \end{bmatrix}.$$
(8)

Thus, we establish for all i = 1, ..., N - 1

$$\dot{z}_{1i}(t) = (-\lambda_{i+1} + \delta(\lambda_{i+1} + \mu))z_{1i}(t) - \delta(\lambda_{i+1} + \mu)z_{1i}(t_k).$$
(9)

By integrating the previous equation, the following recurrence equation represents the discrete dynamics of the algorithm.

$$z_{1i}(t_{k+1}) = A(\lambda_{i+1}, \delta, T) z_{1i}(t_k),$$

with

$$A(\lambda_{i+1},\delta,T) = \exp^{(-\lambda_{i+1}+\delta(\lambda_{i+1}+\mu))T} \frac{-\lambda_{i+1}}{-\lambda_{i+1}+\delta(\lambda_{i+1}+\mu)} + \frac{\delta(\lambda_{i+1}+\mu)}{-\lambda_{i+1}+\delta(\lambda_{i+1}+\mu)}$$

イロト イロト イヨト イヨト

(10)

By integrating the previous equation, the following recurrence equation represents the discrete dynamics of the algorithm.

$$z_{1i}(t_{k+1}) = A(\lambda_{i+1}, \delta, T) z_{1i}(t_k),$$

with

$$\mathcal{A}(\lambda_{i+1},\delta,T) = \exp^{(-\lambda_{i+1}+\delta(\lambda_{i+1}+\mu))T} \frac{-\lambda_{i+1}}{-\lambda_{i+1}+\delta(\lambda_{i+1}+\mu)} + \frac{\delta(\lambda_{i+1}+\mu)}{-\lambda_{i+1}+\delta(\lambda_{i+1}+\mu)}$$

We will show that by varying δ and T values close to zero, we achieve a performance improvement for $\forall \lambda_{i+1}$, if

$$\frac{\partial A(\lambda_{i+1}, \delta, T)}{\partial T} \le 0, \text{ for some } \delta \text{ values}$$
(11a)

$$\frac{\partial A(\lambda_{i+1}, \delta, T)}{\partial \delta} \le 0, \text{ for some T values}$$
(11b)

イロト イ理ト イヨト イヨト

(10)

When we evaluate the previous equation for $T \simeq 0$ and for $\delta \simeq 0$, respectively, we have

$$\frac{\partial A(\lambda_{i+1}, \delta, T)}{\partial T} = -\lambda_{i+1} \le 0$$

$$\frac{\partial A(\lambda_{i+1}, \delta, T)}{\partial \delta} = e^{-\lambda_{i+1}T} (\lambda_{i+1} + \mu) \left(T + \frac{1}{\lambda_{i+1}}\right) - \left(\frac{\lambda_{i+1} + \mu}{\lambda_{i+1}}\right) \le 0$$

ls;)

22

< 同 ト < 三 ト

When we evaluate the previous equation for $T \simeq 0$ and for $\delta \simeq 0$, respectively, we have

$$\frac{\partial A(\lambda_{i+1}, \delta, T)}{\partial T} = -\lambda_{i+1} \le 0$$

$$\frac{\partial A(\lambda_{i+1}, \delta, T)}{\partial \delta} = e^{-\lambda_{i+1}T} (\lambda_{i+1} + \mu) \left(T + \frac{1}{\lambda_{i+1}}\right) - \left(\frac{\lambda_{i+1} + \mu}{\lambda_{i+1}}\right) \le 0$$

Conclusion:

As $\frac{\partial A(\lambda_{i+1},\delta,T)}{\partial T} = -\lambda_{i+1}$ is negative for all value of δ , and $\frac{\partial A(\lambda_{i+1},\delta,T)}{\partial \delta}$ is also negative for small values of T, we can then conclude that for small values of δ and T we converge more rapidly when compare with the trivial algorithm.

A (10) > A (10) > A

Sketch of the Proof:

Step 1)

$\dot{x}(t) = (-L - \delta A)x(t) + \delta Ax(t_k)$ $\Downarrow \qquad \text{Model Transformation}$

$$\dot{z}_{1}(t) = (-B + \delta(B + \mu I))z_{1}(t) - \delta(B + \mu I)z_{1}(t_{k}),$$
$$\dot{z}_{2}(t) = -\mu z_{2}(t) + \mu z_{2}(t_{k}),$$

< 同 > < ∃ >

Sketch of the Proof:

Step 2) Stability of z₂

For $\forall t \in [t_k \ t_{k+1}[$

$$z_2(t)(=U_2x(t))=z_2(t_k)=z_2(0)$$

proving that z_2 is constant and that

$$x(\infty)=U_2x(0)$$

▲ 伊 ▶ ▲ 王

Sketch of the Proof:

Step 3) Exponential stability of z_1

Consider the following Functional:

$$\overline{V}(t, z_1(t)) = z_1^T(t) P z_1(t)$$

The objective is to prove that the increment ΔV_{α} is negative definite:

$$\Delta V_{\alpha} = \bar{V}(k+1) - e^{-2\alpha T} \bar{V}(k) < 0,$$

then $z_1(t) \rightarrow_{t \rightarrow \infty} 0$ (with a exp. decay rate α)

< 🗇 🕨 🔸

Consider now the following dynamics of
$$z_1$$

$$\dot{z}_{1}(t) = (-B + \delta(B + \mu I))z_{1}(t) - \delta(B + \mu I)z_{1}(t_{k}), \quad (13a)$$
$$\dot{z}_{2}(t) = -\mu z_{2}(t) + \mu z_{2}(t_{k}), \quad (13b)$$

and re-write it in the following way

$$\dot{z}_1(t) = A(\delta)z_1(t) + A_d(\delta)z_1(t_k),$$

with $A(\delta) = (-B + \delta(B + \mu I))$ and $A_d(\delta) = -\delta(B + \mu I)$.

< 同 > < ∃ >

Main Result (based on A. Seuret,"Stability of sampled-data Systems", Automatica [2011]),

Assume that there exist P > 0, R > 0 and S_1 and $X \in \mathbb{S}^n$ and two matrices $S_2 \in \mathbb{R}^{n \times n}$ and $N \in \mathbb{R}^{2n \times n}$ that satisfy

 $\Pi_1 + f_\alpha(T,0)\Pi_2 + h_\alpha(T,0)\Pi_3 < 0, \tag{14}$

$$\begin{bmatrix} \Pi_1 + h_{\alpha}(T,T)\Pi_3 & g_{\alpha}(T,T)N \\ * & -g_{\alpha}(T,T)R \end{bmatrix} < 0,$$
(15)

・ ロ と ・ 白 と ・ ・ ・ ・ ・

where

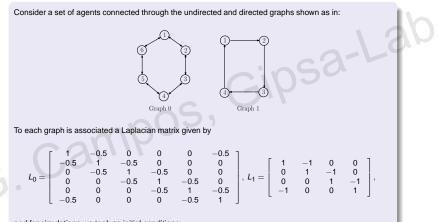
$$\begin{aligned} &f_{\alpha}(T,\tau) = (e^{2\alpha(T-\tau)} - 1)/2\alpha, & \Pi_1 = 2He\{M_1^T P(M_0 + \alpha M_1)\} - M_3^T S_1 M_3 \\ &g_{\alpha}(T,\tau) = e^{2\alpha T} (1 - e^{-2\alpha \tau})/2\alpha, & -2He\{M_3^T S_2 M_2) - 2He\{NM_3\}, \\ &h_{\alpha}(T,\tau) = \frac{1}{\alpha} \begin{bmatrix} e^{2\alpha T} - 1 \\ 2\alpha T & -e^{2\alpha \tau} \end{bmatrix}, & \Pi_2 = M_0^T RM_0 + 2He\{M_0^T (S_1 M_3 + S_2 M_2)\}, \\ &\Pi_3 = M_2^T XM_2. \end{aligned}$$
(16)

Also,

 $M_0 = \begin{bmatrix} A(\delta) & A_d(\delta) \end{bmatrix}, M_1 = \begin{bmatrix} I & 0 \end{bmatrix}, M_2 = \begin{bmatrix} 0 & I \end{bmatrix}, M_3 = \begin{bmatrix} I & -I \end{bmatrix}, \text{ and } 2He\{A\} = A + A^T.$

Then, the consensus algorithm is thus $\alpha-$ stable and converge to the average of initial conditions, and $\Delta V_{\alpha} < 0$

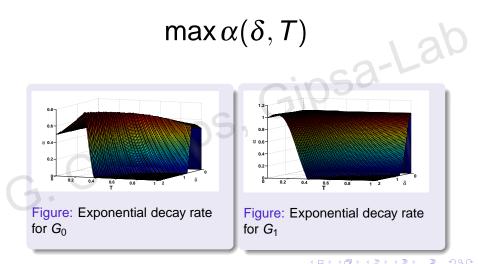
Simulation Scenario



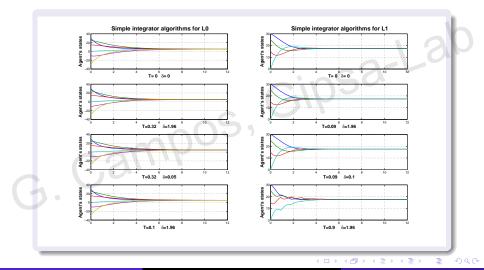
and for simulations we took as initial conditions:

 $x_0^T(0) = [30\ 25\ 15\ 0\ -10\ -30] \text{ and } x_1^T(0) = [30\ 25\ 15\ 0].$

Controller parameters optimization results



Algorithm Convergence Evolution of the agents state for several values of (δ, T)



Gabriel Campos, Alexandre Seuret Improved Consensus Algorithms With Memory

Algorithm Convergence (Error with respect to the agreement value evolution),

Error with respect to the agreement value evolution:

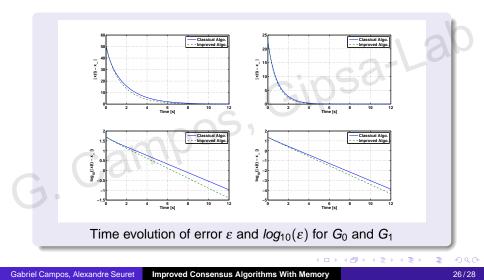
Consider now

$$\varepsilon = |\mathbf{x}(t) - \mathbf{x}_{\infty}|,$$

as the module of the error between agents states and the agreement value x_{∞}

< 同 → < 三 →

Algorithm Convergence (Evolution of the error with respect to the agreement value)



Conclusions and Perspectives

For the proposed algorithm

- Theoretical guarantee for improved behavior is stated
- Sufficient stability conditions are provided
- Exponential stability of the solutions is achieved
- Improved behavior observed for different types of networks

Drawbacks

- LMI based stability conditions complexity for large networks.
- Centralized LMI solution

Perspectives

Robustness with respect to errors in the synchronisation clocks.

< 同 > < ∃ >

Thank you for your attention

Cam

< 同 > < ∃ >